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Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

BERT

ELMO

GPT

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The 
Measurement 
of Meaning

Deerwater: 
Indexing by Latent 
Semantic Analysis 
(LSA)

Brown et al.: Class-based ngram models of 
      natural language 

Switzer: Vector 
Space Models

Bengio: 
Neural-net
based 
embeddings

Mikolov: word2vec

Collobert and 
Weston: A unified 
architecture for 
natural language 
processing: Deep 
neural networks...

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant. 

Language Models
Vector Semantics
LMs + Vectors 

GPT4

RoBERTA

These (or similar) are 
behind almost all 
state-of-the-art 
modern NLP systems

An RNN based 
language model



Attention

RNNs

Neural Networks



Artificial Neural Networks

What is it?
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- Biologically inspired computing model
- Learn patterns from the data
- Can even approximate nonlinear functions in the nature!
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Artificial Neural Networks

What is it?

- Biologically inspired computing model
- Learn patterns from the data
- Can even approximate nonlinear functions in the nature!

How did we do this?



Artificial Neural Networks
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Artificial Neural Networks

𝛽

MatMul Subtract

y

Square

x

ŷ
error

x = torch.Tensor(input)
beta = torch.random.randn(X.shape, 1)
yhat = torch.matmul(x, beta)

err = torch.Tenor(y) - yhat
loss = err**2

import torch
from torch import nn 



Artificial Neural Networks

𝛽

linear MSE

y
x

ŷ

x = torch.Tensor(input)
beta = torch.random.randn(X.shape, 1)
z = nn.linear(x) #beta stored within
yhat = nn.functional.relu(z) #activation func

loss = nn.MSELoss(yhat, torch.Tensor(y))

import torch
from torch import nn 

Relu loss



Artificial Neural Networks

linear CELoss

y
x

ŷ

x = torch.Tensor(input)
beta = torch.random.randn(X.shape, 1)
yhat = torch.matmul(x, beta)

loss = nn.nn.CrossEntropyLoss(yhat, torch.Tensor(y)) 
#^contains logistic activation

import torch
from torch import nn 

loss

𝛽



But, how do we model complex systems using these linear systems?
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Deep Learning

linear regressions + non-linear activations



Deep Learning

linear regressions + non-linear activations

“hidden layer”“hidden layer”

(skymind, AI Wiki)

     (matmul)           f, g

(weighted sum)



Activation Functions
z = h(t)W



Common Activation Functions
z = h(t)W

Logistic:  𝜎(z) = 1 / (1 + e-z)

Hyperbolic tangent: tanh(z) = 2𝜎(2z) - 1 = (e2z - 1) / (e2z + 1)

Rectified linear unit (ReLU): ReLU(z) = max(0, z)



Common Activation Functions
z = h(t)W

Logistic:  𝜎(z) = 1 / (1 + e-z)

Hyperbolic tangent: tanh(z) = 2𝜎(2z) - 1 = (e2z - 1) / (e2z + 1)

Rectified linear unit (ReLU): ReLU(z) = max(0, z)



Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h1 = g(xW)“hidden layer”

(skymind, AI Wiki)

     (matmul)           f, g

(weighted sum)



Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”“hidden layer”

(skymind, AI Wiki)

     (matmul)           f, g

(weighted sum)

y(t) = f(h(t)W)

Activation Function

h1 = g1(xW1) 
h2= g2(h1W2) 
ypred = g3(h2Wfinal) 



Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”“hidden layer”

(skymind, AI Wiki)

     (matmul)           f, g

(weighted sum)

y(t) = f(h(t)W)

Activation Function

h1 = g1(xW1) #[n x 3] -> [n x 4]
h2= g2(h1W2) #[n x 4] -> [n x 4]
ypred = g3(h2Wfinal) #[n x 4] -> [n x 1]



Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(x(t)W)“hidden layer”

(skymind, AI Wiki)



Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(x(t)V)



Language Modeling

Building a model (or system / API) that can answer the following:

a sequence of 
natural language 

Trained
Language 

Model

Training Corpus
training

(fit, learn)

What is the next word 
in the sequence?

The horse which was raced 
past the barn [tripped]  . 



Language Modeling

Building a model (or system / API) that can answer the following:

a sequence of 
natural language 

Trained
Language 

Model

Training Corpus
training

(fit, learn)

What is the next word 
in the sequence?

To fully capture natural 
language, models get 
very complex! 

The horse which was raced 
past the barn [tripped]  . 



Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(x(t)V)



Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

yt = f(matmul(ht,W))

Activation Function

h(t) = g(h(t-1) U + x(t)V)

shorthand for vector/ matrix multiply



Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(h(t-1) U + x(t)V)



The Standard Recurrent Neural Network

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(h(t-1) U + x(t)V)



The Standard RNN
y(t) = f(h(t)W)

h(t) = g(h(t-1) U + x(t)V)

#forward pass graph:

h
(0) 

= 0

for i in range(1, len(x)):

h
(i) 

= g(U h
(i-1)

 + W x
(i)

) #update hidden state

y
(i) 

= f(V h
(i)

) #update output



The Standard RNN
y(t) = f(h(t)W)

h(t) = g(h(t-1) U + x(t)V)

#forward pass:

h
(0) 

= 0

for i in range(1, len(x)):

h
(i) 

= tanh(matmul(U,h
(i-1)

)+ matmul(W,x
(i)

)) #update hidden state

y
(i) 

= softmax(matmul(V, h
(i)

)) #update output (for classification)



The Standard RNN
y(t) = f(h(t)W)

h(t) = g(h(t-1) U + x(t)V)

def forward(self, X):

#Basic RNN Forward Pass: 

     h
(0) 

= 0
for i in range(1, len(x)):

h
(i) 

= torch.tanh(torch.matmul(U,h
(i-1)

)+ torch.matmul(W,x
(i)

)) #update 

hidden state

y
(i) 

= nn.log_softmax(torch.matmul(V, h
(i)

)) #update output

...

loss_func = nn.NLLLoss() #negative log likelihood loss

            #torch.mean(-torch.sum(y*y_pred))



Visualizing Sequences:
Unrolling



y(t) = f(h(t)W)

Activation Function

h(t) = g(h(t-1) U + x(t)V)

Visualizing Sequences:
Unrolling



Visualizing Sequences:
Unrolling

y("bill") = f(h("bill")W)

Activation Function

h("bill") = g(h("the") U + x("bill")V)



Visualizing Sequences:
Unrolling

The GRU!



The GRU

Gated Recurrent Unit

(Geron, 2017)



The GRU

Standard RNN:

(Geron, 2017)
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Standard RNN:

(Geron, 2017)



The GRU

Gated Recurrent Unit

(Geron, 2017)



The GRU

Gated Recurrent Unit

relevance gate
update  gate



The GRU

Gated Recurrent Unit

relevance gate
update  gate

A candidate for updating h, h~



The GRU

Gated Recurrent Unit

The cake, which contained candles, was eaten. 



The GRU

Gated Recurrent Unit

The cake, which contained candles, was eaten. 



What about the gradient?
The gates (i.e. multiplications 
based on a logistic) often end up 
keeping the hidden state exactly 
(or nearly exactly) as it was. Thus, 
for most dimensions of h, 

h(t) ≈ h(t-1)  

The cake, which contained candles, was eaten. 



What about the gradient?
The gates (i.e. multiplications 
based on a logistic) often end up 
keeping the hidden state exactly 
(or nearly exactly) as it was. Thus, 
for most dimensions of h, 

h(t) ≈ h(t-1)  

This tends to keep the gradient 
from vanishing since the same 
values will be present through 
multiple times in backpropagation 
through time. (The same idea 
applies to LSTMs but is easier to 
see here). 

The cake, which contained candles, was eaten. 



How to train a GRU-style RNN

RNN_cost = torch.mean(-torch.sum(y*torch.log(y_pred)) 

Logistic Regression Likelihood:

Final Cost Function:  -- “cross entropy error”

?



How to train an LSTM-style RNN

RNN_cost = torch.mean(-torch.sum(y*torch.log(y_pred)) 

Logistic Regression Likelihood:

Log Likelihood:  

Log Loss: 

Cross-Entropy Cost: (a “multiclass” log loss)

Final Cost Function:  -- “cross entropy error”

To Optimize Betas (all weights within LSTM cells): 

Stochastic Gradient Descent (SGD)
-- optimize over one sample each iteration

Mini-Batch SDG:
--optimize over b samples each iteration



How do we optimize this network?

Cost Function

Function



How do we optimize this network?

Answer: Gradient 
Descent

Cost Function



 "log loss" or "normalized log loss": 

J(𝛽)

𝛽1

Remember? Gradient Descent?

Update Step: βnew = βold - 𝞪 * grad
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 "log loss" or "normalized log loss": 

Remember? Gradient Descent?



 "log loss" or "normalized log loss": 

Remember? Gradient Descent?

Simple update step

Update Step: 
βnew = βold - 𝞪 * grad



How do we do Gradient Descent for this 
Problem?



How do we optimize this network?



How do we optimize this network?



How do we optimize this network?

Good News! 

PyTorch does 

it for you!

(More on the lecture  

after spring break!!!)



class RNNPyTorch(nn.Module):

    def __init__(self, input_size:int, hidden_size:int, vocab_size:int):

self.gru_layer = nn.GRU(input_size=input_size, hidden_size=hidden_size)
self.lin_layer = nn.Linear(hidden_size, vocab_size)

def forward(self, input_rep:torch.Tensor):

output_rep, hidden_rep = self.gru_layer(input_rep)

output_logits = self.lin_layer(output_rep)

return output_logits

GRU Implementation: PyTorch



 

How do we update the Network?



- Update using the:

loss over the entire train set

(GD)

How do we update the Network?



for epoch in range(num_epochs): # Pass X_tr, y_tr

    

        # Forward pass: pass the input through the model

   

        output = model(X_tr)

        

        # Compute the loss

        loss = criterion(output, y_tr, reduction="mean")

        

        # Zero out gradients

        optimizer.zero_grad()

        

        # Backward pass: compute gradients

        loss.backward()

        

        # Update parameters

        optimizer.step()

GD (aka Batch GD)



- Update using the:

loss over the entire train set

(GD)

How do we update the Network?

Accurate gradient 
estimates, 
but impractical as the 
network size grows. 



- Update using the:

loss over the entire train set loss from each sample

(GD) (SGD)

How do we update the Network?

Accurate gradient 
estimates, 
but impractical as the 
network size grows. 



for epoch in range(num_epochs): # Iterate over X_tr, y_tr

    for x_sample, y_sample in zip(X_tr, y_tr):

        # Forward pass: pass the input through the model

   

        output = model(x_sample)

        

        # Compute the loss

        loss = criterion(output, y_sample)

        

        # Zero out gradients

        optimizer.zero_grad()

        

        # Backward pass: compute gradients

        loss.backward()

        

        # Update parameters

        optimizer.step()

SGD



for epoch in range(num_epochs): # Iterate over X_tr, y_tr

    for x_sample, y_sample in zip(X_tr, y_tr):

        # Forward pass: pass the input through the model

   

        output = model(x_sample)

        

        # Compute the loss

        loss = criterion(output, y_sample)

        

        # Zero out gradients

        optimizer.zero_grad()

        

        # Backward pass: compute gradients

        loss.backward()

        

        # Update parameters

        optimizer.step()

SGD



- Update using the:

loss over the entire train set loss from each sample

(GD) (SGD)

How do we update the Network?

Easy to implement, 
but the gradients could be 
very noisy leading to 
suboptimal results

Accurate gradient 
estimates, 
but impractical as the 
network size grows. 



for epoch in range(num_epochs): # Iterate over batches of X_tr, y_tr

    for idx in range(0, len(X_tr), batch_size):

        # Forward pass: pass the input through the model

  

        X_batch, y_batch = X_tr[i:i+batch_size], y_tr[i:i+batch_size]

   output = model(X_tr)

        

        # Compute the loss

        loss = criterion(output, y_tr, reduction="mean")

        

        # Zero out gradients

        optimizer.zero_grad()

        

        # Backward pass: compute gradients

        loss.backward()

        

        # Update parameters

        optimizer.step()

mini-Batch GD



for epoch in range(num_epochs): # Iterate over batches of X_tr, y_tr

    for idx in range(0, len(X_tr), batch_size):

        # Forward pass: pass the input through the model

  

        X_batch, y_batch = X_tr[i:i+batch_size], y_tr[i:i+batch_size]

   output = model(X_tr)

        

        # Compute the loss

        loss = criterion(output, y_tr)

        

        # Zero out gradients

        optimizer.zero_grad()

        

        # Backward pass: compute gradients

        loss.backward()

        

        # Update parameters

        optimizer.step()

mini-Batch GD

Effective use of hardware, 
while minimizing the 
variance of gradient 
updates. 
Offers faster optimization 
while ensuring optimal 
solution



The horse which was raced past the barn tripped . 

RNN Limitation: 
Losing Track of Long Distance Dependencies



Language modeling 
with an RNN

RNN

step 1 step 2 … 



RNN-Based Language Models
Take-Aways

● Simple RNNs are powerful models but they are difficult to train: 

○ Just two functions h
(t)

 and y
(t)

 where h
(t) 

is a combination of h
(t-1)

 and x
(t)

.

○ Exploding and vanishing gradients make training difficult to converge. 

● LSTM and GRU cells solve

○ Hidden states pass from one time-step to the next, allow for 

long-distance dependencies. 

○ Gates are used to keep hidden states from changing rapidly (and thus 

keeps gradients under control). 

○ To train: mini-batch stochastic gradient descent over cross-entropy cost



● Difficult to capture long-distance dependencies

● Not parallelizable -- need sequential processing.

○ Slow computation for long sequences

● Vanishing or exploding gradients

Recap: RNN Limitations



How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk



How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

Always take the most probable next word:

def generateGreedy(model, history=['<s>']):
vocabProbs = model.getNextProbs(history)
history += argmax(vocabProbs) 

               #word with maximum prob
if history[-1] == '</s>': return history
else: return generateGreedy(model, history)



How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

Always take the most probable next word:

Problem: 

p('<s> ok ok </s>')
=.28

p('<s> yes yes </s>')
=.20

def generateGreedy(model, history='<s>'):
vocabProbs = model.getNextProbs(history)
history += argmax(vocabProbs) 

               #word with maximum prob
if history[-1] == '</s>': return history
else: return generateGreedy(model, history)

<s>

</s>
</s>

</s>
</s>

</s>
</s>



How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

Always take the most probable next word:

def generateGreedy(model, history=['<s>']):
vocabProbs = model.getNextProbs(history)
history += argmax(vocabProbs) 

               #word with maximum prob
if history[-1] == '</s>': return history
else: return generateGreedy(model, history)

Disadvantage: Focuses on the 
most probable, which is the 
most typical. Results in very 

"average sounding" utterances. 



How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

Evaluate among 
multiple sequences. 

Restrict to consider 
the top k (beam 
width) most probable 
per step. 

def generateBeam(model, history=['<s>'], init_prob=1, k=4):
  frontier = [(history, init_prob)] 
  max_path = []
  max_path_p = -1.0
  while path, path_p in frontier:
    if path[-1] == "</s>": #current max
      if path_p > max_path_p:

    max_path = path
    map_path_p = path_p
else: 

      vocabProbs = model.getNextProbs(path)
      nextWPs = topK(vocabProbs, k)
      for w, p in nextWPs.items():

frontier.append((path+w, path_p*p))
  return max_path, max_path_p
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● Random Walk

Evaluate among 
multiple sequences. 

Restrict to consider 
the top k (beam 
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per step. 

def generateBeam(model, history='<s>', init_prob=1, k=4):
  frontier = [(history, init_prob)] 
  max_path = []
  max_path_p = -1.0
    while path, path_p in frontier:
      if path[-1] == "</s>": #current max

if path_p > max_path_p:
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map_path_p = path_p

  else: 
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for w, p in nextWPs.items():
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  return max_path, max_path_p
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● Greedy Search
● Beam Search
● Random Walk

Evaluate among 
multiple sequences. 

Restrict to consider 
the top k (beam 
width) most probable 
per step. 

def generateBeam(model, history='<s>', init_prob=1, k=4):
  frontier = [(history, init_prob)] 
  max_path = []
  max_path_p = -1.0
    while path, path_p in frontier:
      if path[-1] == "</s>": #current max

if path_p > max_path_p:
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  else: 
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frontier.append((s+w, path_p*p))
  return max_path, max_path_p
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● Greedy Search
● Beam Search
● Random Walk

Evaluate among 
multiple sequences. 

Restrict to consider 
the top k (beam 
width) most probable 
per step. 

def generateBeam(model, history='<s>', init_prob=1, k=4):
  frontier = [(history, init_prob)] 
  max_path = []
  max_path_p = -1.0
    while path, path_p in frontier:
      if path[-1] == "</s>": #current potential end

if path_p > max_path_p:
max_path = path
map_path_p = path_p

  else: 
vocabProbs = model.getNextProbs(path)
nextWPs = topK(vocabProbs, k)
for w, p in nextWPs.items():

frontier.append((s+w, path_p*p))
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How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

Evaluate among 
multiple sequences. 

Restrict to consider 
the top k (beam 
width) most probable 
per step. 

def generateBeam(model, history='<s>', init_prob=1, k=4):
  frontier = [(history, init_prob)] 
  max_path = []
  max_path_p = -1.0
    while path, path_p in frontier:
      if path[-1] == "</s>": #current potential end

if path_p > max_path_p:
max_path = path
map_path_p = path_p

  else: 
vocabProbs = model.getNextProbs(path)
nextWPs = topK(vocabProbs, k)
for w, p in nextWPs.items():

frontier.append((s+w, path_p*p))
  return max_path, max_path_p

  



How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

def generateRandWalk(model, history=['<s>']):
vocabProbs = model.getNextProbs(history)
history += multinomial.draw(vocabProbs)
           #random multinomial draw by probs
if history[-1] == '</s>': return history
else: return generateRandWalk(model, history)

Task: Estimate P(wi| w1,…wi-1)
:P(masked word given history)

P(with | He ate the cake <M>) = ?

     with   yummy  using     and     by   without



How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

Easiest for somewhat realistic generation;
most true (occasionally picks low prob)

def generateRandWalk(model, history=['<s>']):
vocabProbs = model.getNextProbs(history)
history += multinomial.draw(vocabProbs)
           #random multinomial draw by probs
if history[-1] == '</s>': return history
else: return generateRandWalk(model, history)

Task: Estimate P(wi| w1,…wi-1)
:P(masked word given history)

P(with | He ate the cake <M>) = ?

     with   yummy  using     and     by   without



How to use an LM for Generation

Practical Points

● Use log probs for faster computation tracking maximums. 

● Can normalize by length to not favor shorter sequences: 

● Combine beam and random walk for more novelty. 



How do we Optimize Neural Networks?
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How do we Optimize Neural Networks?

Sigmoid



 "log loss" or "normalized log loss": 

Simple update step

Update Step: 
βnew = βold - 𝞪 * grad

How do we Optimize Neural Networks?



How do we Optimize Complex Neural Networks?



Function

How do we Optimize Complex Neural Networks?



How do we Optimize Complex Neural Networks?

@ e-z +1 1/h

x

W

f



Back Propagation

@ e-z +1 1/h

x

W

f

Think of Networks as a connected 
Graph



Back Propagation

e-z +1 1/h

Think of Networks as a connected 
Graph
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*

* + f



Back Propagation

e-z +1

x0

w0

x1

w1

w2

*

* + 1/h f

Forward Pass: Compute the 
intermediate values and network 
output
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Back Propagation

e-z +1
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w1

w2

*

* + 1/h f

Forward Pass: Compute the 
intermediate values and network 
output

1

.5

-.3

.1

2

.5

-.6



Back Propagation

e-z +1

x0

w0

x1

w1

w2

*

* + 1/h f

Forward Pass: Compute the 
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The + operator is a gradient distributor. It 
distributes the gradient equally to all its connecting 
nodes.
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Back Propagation

- Gradients of parameters in a large complex networks can be computed by 
piecing the local gradients together

- Chain rule helps to build large networks without having to compute the gradient 
rule for each parameter ahead of time

- Gradient computation of f wrt to a parameter w with intermediate output z is:

∂f / ∂w = ∂f / ∂z * ∂z / ∂w



Back Propagation Demonstration

Demonstration ipython notebook:

https://bit.ly/cse538sp25-325-backprop

https://bit.ly/cse538sp25-325-backprop


How can this be done in PyTorch?

class CustomActivation(torch.autograd.Function):
    @staticmethod
    def forward(ctx, input):
        # Forward pass of the custom activation.
        # Compute the output 
        # save intermediate variables required for the backward pass.
        
    @staticmethod
    def backward(ctx, grad_output):
        # Backward pass of the custom activation.
        # Compute the gradient of the loss with respect to the input.
        # Args: grad_output-Gradient of the loss wrt the activation op
        # Returns: Gradient of the loss with respect to the input.
        
        raise NotImplementedError



How can this be done in PyTorch?

class SigmoidActivation(torch.autograd.Function):
    @staticmethod
    def forward(ctx, input):
        # Compute the sigmoid function: f(x) = 1 / (1 + exp(-x))
        result = 1 / (1 + torch.exp(-input))

ctx.save_for_backward(result)
Return result

        
    @staticmethod
    def backward(ctx, grad_output):
        (result,) = ctx.saved_tensors

# The derivative of the sigmoid is: f(x) * (1 - f(x))
        grad_input = grad_output * result * (1 - result)

Return grad_input



Supplemental Review Material
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- we increase the size of hidden dimensions?
- we change the activation from sigmoid?

- we stack more layers of RNN on top of each other?

What happens to this update rule when…
Rule stays the same
Substitute the partial differential 
of sigmoid 

Hot mess!

But how are we performing Gradient Descent on 
these Complex Models?  Back Propagation 

(More on the lecture after spring break!!!)


