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Artificial Neural Networks

What is it?



Artificial Neural Networks

What is it?

- Biologically inspired computing model
- Learn patterns from the data
- Can even approximate nonlinear functions in the nature!
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Artificial Neural Networks
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What is it? r How did we do this:
- Biologically inspired computing model
- Learn patterns from the data
- Can even approximate nonlinear functions in the nature!
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import torch

Artificial Neural Networks from torch import nn
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But, how do we model complex systems using these linear systems?
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But, how do we model complex systems using these linear systems?



Deep Learning
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linear regressions + non-linear activations



Deep Learning

T~

Inputs  Weights Net input Activation
function function

linear regressions + non-linear activations

(matmul)

(weighted sum)




Activation Functions
Z = h(t)W



Common Activation Functions
z=h W
(t)

Logistic: o(z)=1/(1+€%)

Hyperbolic tangent: tanh(z) = 20(2z) - 1 = (**- 1)/ (e** + 1)

Rectified linear unit (ReLU): ReLU(z) = max(0, z)



Common Activation Functions
z=lo(t)W T 1

Logistic: o(z)=1/(1+€%)
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Hyperbolic tangent: tanh(z) = 20(2z) - 1 = (**- 1)/ (e** + 1)

Rectified linear unit (ReLU): ReLU(z) = max(0, z)




Neural Networks: Graphs of Operations
(excluding the optimization nodes)

Inputs  Weights Net input Activation
function function

Activation Function

output hz =g|(xVV)

(weighted sum)

Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden
layer depends on the current input as well as the activation value of the hidden layer from the

previous timestep. (Jurafsky, 2019)



Neural Networks: Graphs of Operations
(excluding the optimization nodes)

Activation Function

h,=g,(xW)
output layer WIS SURZ4Y

input layer ypred :gﬁ’(hZVVﬁml)
hidden layer 1 hidden layer 2

Simple recurrent neural network after ElIman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden

layer depends on the current input as well as the activation value of the hidden layer from the
previous timestep. (Jurafsky, 2019)



Neural Networks: Graphs of Operations
(excluding the optimization nodes)

Activation Function

h,=g,(xW )#[nx3]->[nx4]
SUGVQARYEY /) = ¢ (b W) #[n x 4] -> [n x 4]
input layer ypredzgg(hz%wl)#[nxlt] > [nx1]
hidden layer 1 hidden layer 2

Simple recurrent neural network after ElIman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden

layer depends on the current input as well as the activation value of the hidden layer from the
previous timestep. (Jurafsky, 2019)



Neural Networks: Graphs of Operations
(excluding the optimization nodes)

Activation Function

by =&, W)

“hidden layer” —=

Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden

layer depends on the current input as well as the activation value of the hidden layer from the
previous timestep. (Jurafsky, 2019)



Neural Networks: Graphs of Operations
(excluding the optimization nodes)
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Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden
layer depends on the current input as well as the activation value of the hidden layer from the
previous timestep. (Jurafsky, 2019)



Language Modeling

Building a model (or system / API) that can answer the following:

a sequence of
natural language
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training
(fit, learn)

What is the next word
>N
in the sequence?

The horse which was raced

past the barn [tripped] .
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Building a model (ors

a sequence of

natural language

Training Corpus

To fully capture natural
language, models get

very complex!
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training
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The horse which was raced

past the barn [tripped] .



Neural Networks: Graphs of Operations
(excluding the optimization nodes)
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Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden
layer depends on the current input as well as the activation value of the hidden layer from the
previous timestep. (Jurafsky, 2019)



Neural Networks: Graphs of Operations
(excluding the optimization nodes)

Yt
L T
_ I
hidden layer’ — : C by=gh, , Utx,V)
I T
xt shorthand for vector/ matrix multiply

Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden
layer depends on the current input as well as the activation value of the hidden layer from the

previous timestep. (Jurafsky, 2019)



Neural Networks: Graphs of Operations
(excluding the optimization nodes)

Yi

F T Activation Function

I
I |

“hidden layer” — :( h ){ " g(h(”)U+ V)
I

S

Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden
layer depends on the current input as well as the activation value of the hidden layer from the

previous timestep. (Jurafsky, 2019)




The Standard Recurrent Neural Network

( yt ){ .y (t) :f (b(t) VV)
|
[ 2= =A T Actlvatlon Function

|
|
1] g A h
hidden layer” — : C t ){ o g(h(”)U+x(t)V)
|

Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden
layer depends on the current input as well as the activation value of the hidden layer from the

previous timestep. (Jurafsky, 2019)
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The Standard RNN

i#fbrward pass graph:

Ny = @
for i in range(1l, len(x)):

h(n = g(U hﬁ=D + W xﬁj) #update hidden state

Yy = (Vv hﬁ)) #update output
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The Standard RNN ===~
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C X )
i#fbrward pass:
Ny = @
for i in range(1l, len(x)):
h(n = tanh(matmul(U,hU:D)+ matmul(w,xﬁ))) #update hidden state

Yy = softmax(matmul(V, h“))) #update output (for classification)



— =107

The Standard RNN

C X )
def forward(self, X):
#Basic RNN Forward Pass:
h(m =0
for i in range(1, len(x)):
h(n = torch.tanh(torch.matmul(U,hufn)+ torch.matmul(w,x(n)) #update

|
|
|
|
|
|
|
|
|
I .
| hidden state

: Yy = nn.log softmax(torch.matmul(V, h(n)) #update output
|

|

|

|

|

|

|

|

|

|

|

loss _func = nn.NLLLoss() #negative log likelihood loss
#torch.mean(-torch.sum(y*y pred))
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(C Janet ) ( will ) _back ) C( the i bill )

Uy R]  Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.
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Visualizing Sequences: T T i t i
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$ Time
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QTR Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.
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Visualizing Sequences: T i N t "
Unrolling : ; T h(O)T hmT
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QTR Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.
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QTR Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.
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The GRU

Gated Recurrent Unit

Yoy
h 4 )
(t'1)_t ® @ B> h(t)
i — Element-wise !
i~ multiplication !
| ® Addition |
i_ logistic !
| I tanh |

GRU cell J

____________________

(Geron, 2017)




The GRU

Standard RNN:

Yo
. s ~
(t-1) —
)
_ _J
|
X

®

Element-wise
multiplication

@ Addion |

(Geron, 2017)




The GRU

Standard RNN:

Outputs

Output
\
LTU ..... ! |ayer‘
. N, Input
Bias Neuron v P
(always outputs 1) ! layer

Input Neuron

yf) (passthrough) %1 %
Inputs
i s N
1) —p hg,
: Element-wise :
E® multipli i
“® Addion |
z ; ]
A / | mmm logistic |
| m— o |
\_ _J

®

(Geron, 2017)




The GRU

Standard RNN:

r T
Zoy =0(Wee Xy + W' -he_py+b)

XZ

Yo
A
h 8 ~
= = hi
: Element-wise
i~ multiplication |
| @ Addition
B0 : D
I logistic |
J | m—tnh |
~ ),
|
Xt)

(Geron, 2017)
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T T
The GRU oy = G(WXZ RGO th 'h(t—l) + bz)

Gated Recurrent Unit

Yo
A
h 8 ~
(t-1) —p ® @ . h(t)

: Element-wise
i~ multiplication |
| @ Addition
i_ logistic !
 W— tanh |

GRU cell J

© (Geron, 2017)




T T
The GRU 2y =0(Wy X+ W, -h,_+b)

Gated Recurrent Unit

h, =2,®h,_ )+ -1z, ®8g,
update gate

relevance gate Yo
A

~

Nit) g [\

! ® Element-wise
{ ~ multiplication !

i @ Addition
i mEm logistic !

____________________

>
I'-'\p, /

GRU cell J
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T T
The GRU 2y =0(Wy X+ W, -h,_+b)

Gated Recurrent Unit
h, =2,®h,_ )+ -1z, ®g,

update gate " A candidate for updating h, h~
A /

! ® Element-wise
{ ~ multiplication !

relevance gate

Nit) g [\

i @ Addition

i_ logistic !

____________________

GRU cell J
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T T
The GRU 2y =0(Wy X+ W, -h,_)+b)

T T
Gated Recurrent Unit g, = tanh (W, -x;,+W, - (r,,®h,_ ;) +b,)
h, =2,®h,_ )+ -1z, ®g,

Yy
A
h 4 )
(t'1)_F ® @ B> h(t)
i — Element-wise !
multiplication
i @ Addition
i_ logistic !
| - fanh |
GRU cell /

The cake, which contained candles, was eaten.



The GRU 2, =0o(W. -x,+W, -h,_,+b)

r, =o(W, -X,+W, -h,+b)

g, = tanh (W, -x,+W, ' (r,®h,_;)+b,)
h, =z,®h, )+ -2,)®g;

Gated Recurrent Unit

Yy
A
( )
h
(t'1)_t ® @ B> h(t)
i — Element-wise !
multiplication
i @ Addition
i I logistic
| - fanh |
GRU cell /

The cake, which contained candles, was eaten.



What about the gradient?

The gates (i.e. multiplications
J— T. T.
zy =0(We' X+ Wy, "h_py+b,) based on a logistic) often end up
r, =o(W, -x,+W, -h,,,+b,) keeping the hidden state exactly
_ T T (or nearly exactly) as it was. Thus,
8y = tanh (W' X+ Wy, - (ry ®hy_y) +by) for most dimensions of h,
0 =2p®he+ (1 -2y ®8,

y ~
\ Ny ™ Ny

( )

X

(t-1) —p

)

XD

GRU cell /

The cake, which contained candles, was eaten.



What about the gradient?

Z)
0

8(1)

G(Wx o X(t) + WhZT * h(t—l) + bZ)

. .

T T
== G(er ° X(t) + Whr ° h(t—l) + br)

T T
= tanh (Wxg * X(t) + Whg * (l'(t) ® h(t—l)) + bg)
=2, ®h,_)+ (1 -27,)®¢g;
Yo
A
( )
() —p ®

XD

GRU cell /

> h,

The gates (i.e. multiplications
based on a logistic) often end up
keeping the hidden state exactly
(or nearly exactly) as it was. Thus,
for most dimensions of h,

Ny ™ ey
This tends to keep the gradient
from vanishing since the same
values will be present through
multiple times in backpropagation
through time. (The same idea
applies to LSTMs but is easier to
see here).

The cake, which contained candles, was eaten.



How to train a GRU-style RNN

RNN_cost = torch.mean(-torch.sum(y*torch.log(y pred))

Logistic Regression Likelihood:  L(Bo, 81, -.., Bl X, Y) = | [ p(x:)¥(1 — p(z:))' ¥
=1

N |V
Final Cost Function: J Z Zyl ]log g " - “cross entropy error”
i=1 j=1



How to train an LSTM-style RNN

RNN_cost = torch.mean(-torch.sum(y*torch.log(y pred))

To Optimize Betas (all weights within LSTM cells):

Stochastic Gradient Descent (SGD)
-- optimize over one sample each iteration

Mini-Batch SDG:
--optimize over b samples each iteration

N V|
Final Cost Function: J) Z Z Ulog g " - “cross entropy error”

1
N«



How do we optimize this network?

2y, =0(W. X, +W, -h, +b)

ro =0o(W, -X,+W, -h,_,+b,)

g, = tanh (W, -x,+W, ' (r,®h,)+b,)
h, =z,®h,+1-z2,)®g,

o [ i J s J{ ol |

V|

1 N . y
8888 e
i=1 j=1
A A A A A

(. Janet ) ( will )(C_ _back ) C( the ) ( bill )




How do we optimize this network?

2y, =0(W. X, +W, -h, +b)

ro =0o(W, -X,+W, -h,_,+b,)

g, = tanh (W, -x,+W, ' (r,®h,)+b,)
h, =z,®h,+1-z2,)®g,

o [ i J s J{ ol |

1 N |V| ‘ 4
8888 e
i=1 j=1
A A A A A

(. Janet ) ( will )(C_ _back ) C( the ) ( bill )




Remember? Gradient Descent?

Initial

/ _— Gradient

/4
4
J
7

JB)

Global cost minimum

e Jmin(w)

>

g Update Step: B =B_,-a*grad

"log loss" or "normalized log loss":

I(8) =~ 3¢ D wiloe(w) + (1 - yi)log(1 — p)




Remember? Gradient Descent?

"log loss" or "normalized log loss":

I(8) =~ D wilox(ps) + (1 - y)log(1 - p)
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"log loss" or "normalized log loss":




Remember? Gradient Descent?

"log loss" or "normalized log loss":




Remember? Gradient Descent?

"log loss" or "normalized log loss":

Update Step:
Bnew = BoId -a’ grad




How do we do Gradient Descent for this
Problem?

- N Zzywlog yz]

i=1 j=1

2y, =0(W.' -x,+W, ' -h,  +b)

ro, =oW, x,+W, -h,_+b,)

tanh (W, X+ W, - (r, ®h,_)) +b,)
h, =z,®h, )+ -z, ®8,

Bie
I



How do we optimize this network?

zt = o(W,zy + U;hy—1 + b,)

ry = o(Wyzy + Uphy—1 + b;)

l.z,, = tanh(Wphz; + Up(r, ® hy—1) + bp)

h; = (1 — Z/) Qhi1+20 }.l/



How do we optimize this network?

Compute Gradients:
¢ Hidden state gradient:
OL  OL Ohiyy
=o(W,z; + U,hy_1 + b,) Oh, Ohi, Ohy

p— where g is the predicted output.
= 0’(_ H“",.;I‘[ 5 i L/T,‘h»[,l + b;) [

Gradients for the update gate:

]-1, = tanh(Whz; + Up(ry © hy—1) + bp)

h‘/:(l*;"

Gradients for the reset gate:

aL (
ory oh,

Gradients for the candidate hidden state:

OL 0L
Ak, Ohy ~

Gradient updates for weights and biases:




How do we optimize this network?

Compute Gradients:
¢ Hidden state gradient:

OL  OL Ohiyy oL 0y,
=o(W,z; + U,hy_1 + b.) dh,  Ohii Oh | 99 0k
% z where g is the predicted output.
ry = o(Wyzy + Uphy—1 + b,)

* Gradients for the update gate:

h, = tanh(Wyz; + Un(re ® hy_1) + bp)

h, = (l 2 .'J/) OQhi_1+2z0 ’tl‘[




GRU Implementation: PyTorch

self.gru_layer
self.lin_layer

nn.GRU(input_size=input_size, hidden_size=hidden_size)
nn.Linear(hidden _size, vocab size)

output_rep, hidden_rep = self.gru_layer(input_rep)
output logits = self.lin_layer(output _rep)
return output_logits



How do we update the Network?



How do we update the Network?

- Update using the:

loss over the entire train set

(GD)



GD (aka Batch GD)

for epoch in range(num_epochs): # Pass X _tr, y_tr

# Forward pass: pass the input through the model




How do we update the Network?

- Update using the:

loss over the entire train set

(GD)

Accurate gradient
estimates,



How do we update the Network?

- Update using the:

loss over the entire train set loss from each sample

(GD) (SGD)

Accurate gradient
estimates,



for epoch in range(num_epochs): # Iterate over X_tr, y tr

for x_sample, y_sample in zip(X_tr, y_tr):
# Forward pass: pass the input through the model




for epoch in range(num_epochs): # Iterate over X_tr, y tr

for x_sample, y_sample in zip(X_tr, y_tr):
# Forward pass: pass the input through the model




How do we update the Network?

- Update using the:

loss over the entire train set loss from each sample
(€]p)) (SGD)
Accurate gradient Easy to implement,

estimates,



mini-Batch GD

for epoch in range(num_epochs): # Iterate over batches of X _tr, y tr
for idx in range(@, len(X_tr), batch_size):
# Forward pass: pass the input through the model




mini-Batch GD

for epoch in range(num_epochs): # Iterate over batches of X _tr, y tr
for idx in range(@, len(X_tr), batch_size):
# Forward pass: pass the input through the model




RNN Limitation:
Losing Track of Long Distance Dependencies

RN

The horse which was raced past the barn tripped .

[ﬂm][ilm]@lm L ds ][ als ][iﬂm]
P




RNN

&LJ[&J}M

F\1

p\z

lﬂﬂﬂﬂ

4

)

Language modeling
with an RNN



RNN-Based Language Models

Take-Aways

e Simple RNNs are powerful models but they are difficult to train:
o Just two functions h(t) and Y where h(t) is a combination of h(t-l) and Xy
o Exploding and vanishing gradients make training difficult to converge.
e LSTM and GRU cells solve
o Hidden states pass from one time-step to the next, allow for
long-distance dependencies.
o Gates are used to keep hidden states from changing rapidly (and thus

keeps gradients under control).
o To train: mini-batch stochastic gradient descent over cross-entropy cost



Recap: RNN Limitations

e Difficult to capture long-distance dependencies
e Not parallelizable -- need sequential processing.
o Slow computation for long sequences

e \Vanishing or exploding gradients



How to use an LM for Generation

e Greedy Search
e Beam Search
e Random Walk



How to use an LM for Generation

e Greedy Search Always take the most probable next word:
e Beam Search

e Random Walk Wy = argmax,, -y P(W|W<t)




How to use an LM for Generation

e Greedy Search Always take the most probable next word:
e Beam Seargh

e Random Pty t1.ty)

Problem:

p('<s> ok ok </s>')
=.28

p('<s> yes yes </s>'

=.20 IDINCERME A search tree for generating the target string T = t1,t,... from vocabulary
V = {yes,ok,<s>}, showing the probability of generating each token from that state. Greedy
search chooses yes followed by yes, instead of the globally most probable sequence ok ok.



Disadvantage: Focuses on the
How to use an LM for Gene most probable, which is the

most typical. Results in very
e Greedy Search RUEVARCLCRUl "average sounding” utterances.
e Beam Search
e Random Walk Wy =

def generateGreedy(model, history=['<s>']):
vocabProbs = model.getNextProbs(history)
history += argmax(vocabProbs)
#word with maximum prob
if history[-1] == "'</s>': return history
else: return generateGreedy(model, history)



How to use an LM for Generation

e Greedy Search
e Beam Search
e Random Walk

Evaluate among
multiple sequences.

Restrict to consider
the top k (beam
width) most probable
per step.




2 an LM for Generation

log P(arrived|x)

=16 def generateBeam(model, history='<s>', init prob=1, k=4):
ch frontier = [(history, init_prob)]
h max_path = []
K max_path_p = -1.0
while path, path_p in frontier:
if path[-1] == "</s>": #current max

if path_p > max_path p:
max_path = path

hg map_path _p = path p
else:
vocabProbs = model.getNextProbs(path)
pr nextWPs = topK(vocabProbs, k)

‘ for w, p in nextWPs.items():
Siar frontier.append((s+w, path p*p))
log P(y,x) l(_
- S return max_path, max_path_p

Yi

DTN RAY  Scoring f

of each hypothesis in the
k paths are extended to t




log P (arrived the|x

o BEe .

NN Generation

log P(arrived|x) - 69

=.1.6 /

arrived—-2.3—

log P(vy,|x) log P(v,|y,.x) log P(v,
- - ] -~ o L= ] - < Jl

Yi Y2

IO CHRARY  Scoring for beam search decoding
of each hypothesis in the beam by incrementally ¢
k paths are extended to the next step.



log P (arrived thelx)

o P(: 3 sl
log P(arrivedix) - 69 log P(arrived witch|x) -J.2
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DTN CMRAY  Scoring for beam search decoding with a beam
of each hypothesis in the beam by incrementally adding the logp
k paths are extended to the next step.
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IDTICMRRY  Scoring for beam search decoding with a beam width of k = 2. We maintain the log probability
of each hypothesis in the beam by incrementally adding the logprob of generating each next token. Only the top
k paths are extended to the next step.
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How to use an LM for Generation

e Greedy Search def generateRandWalk(model, history=['<s>']):

e Beam Search vocabProbs = model.getNextProbs(history)

e Random Walk history += mult1nom1al.c.jr'awgvocabPr‘obs)
#random multinomial draw by probs

if history[-1] == '</s>': return history

else: return generateRandWalk(model, history)

Task: Estimate P(w.| w ,..w, )

:P(masked word given history)
P(with | He ate the cake <M>) =? = I

with yummy using and by without




How to use an LM for Generation

e Greedy Search def generateRandWalk(model, history=['<s>']):
e Beam Search vocabProbs = model.getNextProbs(history)
e Random Walk history += mult1nom1al.c.jr'awgvocabPr‘obs)
#random multinomial draw by probs
if history[-1] == '</s>': return history
else: return generateRandWalk(model, history)

Easiest for somewhat realistic generation;

:P(masked word given history)

most true (occasionally picks low prob)
Task: Estimate P(w | w ,..w, )
P(with | He ate the cake <M>) =? = I

with yummy using and by without




How to use an LM for Generation

Practical Points

e Use log probs for faster computation tracking maximums.
e Can normalize by length to not favor shorter sequences:
score(y) =logP(y|x) = ZlogP (vily1,-- ,X) (13.16)

e Combine beam and random walk for more novelty.
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How do we Optimize Neural Networks?

"log loss" or "normalized log loss":

Update Step:
Bnew = BoId -a’ grad




How do we Optimize Complex Neural Networks?

. hidden layer 1 hidden layer 2 hidden layer 3
input layer
o)

output layer




How do we Optimize Complex Neural Networks?

2y, =0(W. X, +W, -h, +b)

ro =0(W, -X,+W, -h,_,+b,)

g, = tanh (W, -x,+W, (r,®h,)+b,)
h, =z,®h,+d-z2,®g,

o [ i J s J{ ol |

A A J A A

(. Janet ) ( will )(C_ _back ) C( the ) ( bill )




How do we Optimize Complex Neural Networks?

b@ﬁ@ﬂ@ﬂ@*ﬂ




Back Propagation

b@ﬁ@ﬂ@ﬂ@*ﬂ

Think of Networks as a connected
Graph




Back Propagation

0000

Think of Networks as a connected
Graph




Back Propagation

3

o ©

-3

- a@—»@—»@»ﬂ

Forward Pass: Compute the
Intermediate values and network
output




Back Propagation

1
5 5

-.6

o 006001

Forward Pass: Compute the
Intermediate values and network
output




Back Propagation

1
5 5

-.6

o 90-0-6-0-0f

Forward Pass: Compute the
Intermediate values and network
output




Back Propagation
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At each step we are going to
compute the local gradient and
chain it to gradient wrt f
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Back Propagation
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Local Gradient: What is the differential of
the function 1 + pwrtp ? 1
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Back Propagation

D
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The + operator is a gradient distributor. It
distributes the gradient equally to all its connecting
nodes.
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rule for each parameter ahead of time



Back Propagation

- Gradients of parameters in a large complex networks can be computed by
piecing the local gradients together

- Chain rule helps to build large networks without having to compute the gradient
rule for each parameter ahead of time

- Gradient computation of f wrt to a parameter w with intermediate output z is:

of /ow =0f/0z * 0z / ow



Back Propagation Demonstration

Demonstration ipython notebook:

https://bit.ly/cse538sp25-325-backprop



https://bit.ly/cse538sp25-325-backprop

How can this be done in PyTorch?

class CustomActivation(torch.autograd.Function):
@staticmethod
def forward(ctx, input):
# Forward pass of the custom activation.
# Compute the output
# save 1intermediate variables required for the backward pass.

@staticmethod

def backward(ctx, grad output):
# Backward pass of the custom activation.
# Compute the gradient of the Loss with respect to the 1input.
# Args: grad_output-Gradient of the loss wrt the activation op
# Returns: Gradient of the loss with respect to the input.

raise NotImplementedError




How can this be done in PyTorch?

class SigmoidActivation(torch.autograd.Function):
@staticmethod
def forward(ctx, input):
# Compute the sigmoid function: f(x) =1 / (1 + exp(-x))
result =1 / (1 + torch.exp(-input))
ctx.save_ for backward(result)
Return result

@staticmethod

def backward(ctx, grad output):
(result,) = ctx.saved tensors
# The derivative of the sigmoid is: f(x) * (1 - f(x))
grad_input = grad output * result * (1 - result)
Return grad input




Supplemental Review Material
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What happens to this upgs

Compute Gradients:
« Compute Gradients:
« Compute Gradients:
« Compute Gradients:

« Compute Gradients:

we increase the size of hidden dimensions? At
f’_: f( (.7“'1 7(7_A(7l
- we change the activation from sigmoid? Ve S

where 7, is the predicted output.

¢ Gradients for the update gate:
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8z,
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- we stack more layers of RNN on top of eac

¢ Gradients for the reset gate:

oL ((‘?L
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¢ Gradients for the candidate hidden state:
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¢ Gradient updates for weights and biases:
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What happens to this update rule when...

Rule stays the same

- we increase the size of hidden dimensions?
- we change the activation from sigmoid?

- we stack more layers of RNN on top of each other?

But how are we performing Gradient Descent on
these Complex Models? Back Propagation

(More on the lecture after spring break!!!)



