
Deep Learning &
Recurrent Neural Networks

CSE538 - Spring 2025

Timeline: Language Modeling and Vector Semantics

GPT4

RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

Timeline: Language Modeling and Vector Semantics

GPT4

2018

2010

2003

1948

1980

~logarithmic scale

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

These (or similar) are
behind almost all
state-of-the-art
modern NLP systems

RoBERTA

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

BERT

ELMO

GPT

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

GPT4

RoBERTA

These (or similar) are
behind almost all
state-of-the-art
modern NLP systems

An RNN based
language model

Attention

RNNs

Neural Networks

Artificial Neural Networks

What is it?

Artificial Neural Networks

What is it?

- Biologically inspired computing model
- Learn patterns from the data
- Can even approximate nonlinear functions in the nature!

Artificial Neural Networks

What is it?

- Biologically inspired computing model
- Learn patterns from the data
- Can even approximate nonlinear functions in the nature!

Artificial Neural Networks

What is it?

- Biologically inspired computing model
- Learn patterns from the data
- Can even approximate nonlinear functions in the nature!

How did we do this?

Artificial Neural Networks

𝛽

MatMul

x

y
^

Artificial Neural Networks

𝛽

MatMul

y
x

ŷ

Artificial Neural Networks

𝛽

MatMul Subtract

y

Square

x

ŷ
error

Artificial Neural Networks

𝛽

MatMul Subtract

y

Square

x

ŷ
error

x = torch.Tensor(input)
beta = torch.random.randn(X.shape, 1)
yhat = torch.matmul(x, beta)

err = torch.Tenor(y) - yhat
loss = err**2

import torch
from torch import nn

Artificial Neural Networks

𝛽

linear MSE

y
x

ŷ

x = torch.Tensor(input)
beta = torch.random.randn(X.shape, 1)
z = nn.linear(x) #beta stored within
yhat = nn.functional.relu(z) #activation func

loss = nn.MSELoss(yhat, torch.Tensor(y))

import torch
from torch import nn

Relu loss

Artificial Neural Networks

linear CELoss

y
x

ŷ

x = torch.Tensor(input)
beta = torch.random.randn(X.shape, 1)
yhat = torch.matmul(x, beta)

loss = nn.nn.CrossEntropyLoss(yhat, torch.Tensor(y))
#^contains logistic activation

import torch
from torch import nn

loss

𝛽

But, how do we model complex systems using these linear systems?

Deep Learning

But, how do we model complex systems using these linear systems?

Deep Learning

linear regressions + non-linear activations

Deep Learning

linear regressions + non-linear activations

“hidden layer”“hidden layer”

(skymind, AI Wiki)

 (matmul) f, g

(weighted sum)

Activation Functions
z = h(t)W

Common Activation Functions
z = h(t)W

Logistic: 𝜎(z) = 1 / (1 + e-z)

Hyperbolic tangent: tanh(z) = 2𝜎(2z) - 1 = (e2z - 1) / (e2z + 1)

Rectified linear unit (ReLU): ReLU(z) = max(0, z)

Common Activation Functions
z = h(t)W

Logistic: 𝜎(z) = 1 / (1 + e-z)

Hyperbolic tangent: tanh(z) = 2𝜎(2z) - 1 = (e2z - 1) / (e2z + 1)

Rectified linear unit (ReLU): ReLU(z) = max(0, z)

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h1 = g(xW)“hidden layer”

(skymind, AI Wiki)

 (matmul) f, g

(weighted sum)

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”“hidden layer”

(skymind, AI Wiki)

 (matmul) f, g

(weighted sum)

y(t) = f(h(t)W)

Activation Function

h1 = g1(xW1)
h2= g2(h1W2)
ypred = g3(h2Wfinal)

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”“hidden layer”

(skymind, AI Wiki)

 (matmul) f, g

(weighted sum)

y(t) = f(h(t)W)

Activation Function

h1 = g1(xW1) #[n x 3] -> [n x 4]
h2= g2(h1W2) #[n x 4] -> [n x 4]
ypred = g3(h2Wfinal) #[n x 4] -> [n x 1]

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(x(t)W)“hidden layer”

(skymind, AI Wiki)

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(x(t)V)

Language Modeling

Building a model (or system / API) that can answer the following:

a sequence of
natural language

Trained
Language

Model

Training Corpus
training

(fit, learn)

What is the next word
in the sequence?

The horse which was raced
past the barn [tripped] .

Language Modeling

Building a model (or system / API) that can answer the following:

a sequence of
natural language

Trained
Language

Model

Training Corpus
training

(fit, learn)

What is the next word
in the sequence?

To fully capture natural
language, models get
very complex!

The horse which was raced
past the barn [tripped] .

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(x(t)V)

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

yt = f(matmul(ht,W))

Activation Function

h(t) = g(h(t-1) U + x(t)V)

shorthand for vector/ matrix multiply

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(h(t-1) U + x(t)V)

The Standard Recurrent Neural Network

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(h(t-1) U + x(t)V)

The Standard RNN
y(t) = f(h(t)W)

h(t) = g(h(t-1) U + x(t)V)

#forward pass graph:

h
(0)

= 0

for i in range(1, len(x)):

h
(i)

= g(U h
(i-1)

 + W x
(i)

) #update hidden state

y
(i)

= f(V h
(i)

) #update output

The Standard RNN
y(t) = f(h(t)W)

h(t) = g(h(t-1) U + x(t)V)

#forward pass:

h
(0)

= 0

for i in range(1, len(x)):

h
(i)

= tanh(matmul(U,h
(i-1)

)+ matmul(W,x
(i)

)) #update hidden state

y
(i)

= softmax(matmul(V, h
(i)

)) #update output (for classification)

The Standard RNN
y(t) = f(h(t)W)

h(t) = g(h(t-1) U + x(t)V)

def forward(self, X):

#Basic RNN Forward Pass:

 h
(0)

= 0
for i in range(1, len(x)):

h
(i)

= torch.tanh(torch.matmul(U,h
(i-1)

)+ torch.matmul(W,x
(i)

)) #update

hidden state

y
(i)

= nn.log_softmax(torch.matmul(V, h
(i)

)) #update output

...

loss_func = nn.NLLLoss() #negative log likelihood loss

 #torch.mean(-torch.sum(y*y_pred))

Visualizing Sequences:
Unrolling

y(t) = f(h(t)W)

Activation Function

h(t) = g(h(t-1) U + x(t)V)

Visualizing Sequences:
Unrolling

Visualizing Sequences:
Unrolling

y("bill") = f(h("bill")W)

Activation Function

h("bill") = g(h("the") U + x("bill")V)

Visualizing Sequences:
Unrolling

The GRU!

The GRU

Gated Recurrent Unit

(Geron, 2017)

The GRU

Standard RNN:

(Geron, 2017)

The GRU

Standard RNN:

(Geron, 2017)

The GRU

Standard RNN:

(Geron, 2017)

The GRU

Gated Recurrent Unit

(Geron, 2017)

The GRU

Gated Recurrent Unit

relevance gate
update gate

The GRU

Gated Recurrent Unit

relevance gate
update gate

A candidate for updating h, h~

The GRU

Gated Recurrent Unit

The cake, which contained candles, was eaten.

The GRU

Gated Recurrent Unit

The cake, which contained candles, was eaten.

What about the gradient?
The gates (i.e. multiplications
based on a logistic) often end up
keeping the hidden state exactly
(or nearly exactly) as it was. Thus,
for most dimensions of h,

h(t) ≈ h(t-1)

The cake, which contained candles, was eaten.

What about the gradient?
The gates (i.e. multiplications
based on a logistic) often end up
keeping the hidden state exactly
(or nearly exactly) as it was. Thus,
for most dimensions of h,

h(t) ≈ h(t-1)

This tends to keep the gradient
from vanishing since the same
values will be present through
multiple times in backpropagation
through time. (The same idea
applies to LSTMs but is easier to
see here).

The cake, which contained candles, was eaten.

How to train a GRU-style RNN

RNN_cost = torch.mean(-torch.sum(y*torch.log(y_pred))

Logistic Regression Likelihood:

Final Cost Function: -- “cross entropy error”

?

How to train an LSTM-style RNN

RNN_cost = torch.mean(-torch.sum(y*torch.log(y_pred))

Logistic Regression Likelihood:

Log Likelihood:

Log Loss:

Cross-Entropy Cost: (a “multiclass” log loss)

Final Cost Function: -- “cross entropy error”

To Optimize Betas (all weights within LSTM cells):

Stochastic Gradient Descent (SGD)
-- optimize over one sample each iteration

Mini-Batch SDG:
--optimize over b samples each iteration

How do we optimize this network?

Cost Function

Function

How do we optimize this network?

Answer: Gradient
Descent

Cost Function

 "log loss" or "normalized log loss":

J(𝛽)

𝛽1

Remember? Gradient Descent?

Update Step: βnew = βold - 𝞪 * grad

 "log loss" or "normalized log loss":

Remember? Gradient Descent?

 "log loss" or "normalized log loss":

Remember? Gradient Descent?

 "log loss" or "normalized log loss":

Remember? Gradient Descent?

 "log loss" or "normalized log loss":

Remember? Gradient Descent?

Simple update step

Update Step:
βnew = βold - 𝞪 * grad

How do we do Gradient Descent for this
Problem?

How do we optimize this network?

How do we optimize this network?

How do we optimize this network?

Good News!

PyTorch does

it for you!

(More on the lecture

after spring break!!!)

class RNNPyTorch(nn.Module):

 def __init__(self, input_size:int, hidden_size:int, vocab_size:int):

self.gru_layer = nn.GRU(input_size=input_size, hidden_size=hidden_size)
self.lin_layer = nn.Linear(hidden_size, vocab_size)

def forward(self, input_rep:torch.Tensor):

output_rep, hidden_rep = self.gru_layer(input_rep)

output_logits = self.lin_layer(output_rep)

return output_logits

GRU Implementation: PyTorch

How do we update the Network?

- Update using the:

loss over the entire train set

(GD)

How do we update the Network?

for epoch in range(num_epochs): # Pass X_tr, y_tr

 # Forward pass: pass the input through the model

 output = model(X_tr)

 # Compute the loss

 loss = criterion(output, y_tr, reduction="mean")

 # Zero out gradients

 optimizer.zero_grad()

 # Backward pass: compute gradients

 loss.backward()

 # Update parameters

 optimizer.step()

GD (aka Batch GD)

- Update using the:

loss over the entire train set

(GD)

How do we update the Network?

Accurate gradient
estimates,
but impractical as the
network size grows.

- Update using the:

loss over the entire train set loss from each sample

(GD) (SGD)

How do we update the Network?

Accurate gradient
estimates,
but impractical as the
network size grows.

for epoch in range(num_epochs): # Iterate over X_tr, y_tr

 for x_sample, y_sample in zip(X_tr, y_tr):

 # Forward pass: pass the input through the model

 output = model(x_sample)

 # Compute the loss

 loss = criterion(output, y_sample)

 # Zero out gradients

 optimizer.zero_grad()

 # Backward pass: compute gradients

 loss.backward()

 # Update parameters

 optimizer.step()

SGD

for epoch in range(num_epochs): # Iterate over X_tr, y_tr

 for x_sample, y_sample in zip(X_tr, y_tr):

 # Forward pass: pass the input through the model

 output = model(x_sample)

 # Compute the loss

 loss = criterion(output, y_sample)

 # Zero out gradients

 optimizer.zero_grad()

 # Backward pass: compute gradients

 loss.backward()

 # Update parameters

 optimizer.step()

SGD

- Update using the:

loss over the entire train set loss from each sample

(GD) (SGD)

How do we update the Network?

Easy to implement,
but the gradients could be
very noisy leading to
suboptimal results

Accurate gradient
estimates,
but impractical as the
network size grows.

for epoch in range(num_epochs): # Iterate over batches of X_tr, y_tr

 for idx in range(0, len(X_tr), batch_size):

 # Forward pass: pass the input through the model

 X_batch, y_batch = X_tr[i:i+batch_size], y_tr[i:i+batch_size]

 output = model(X_tr)

 # Compute the loss

 loss = criterion(output, y_tr, reduction="mean")

 # Zero out gradients

 optimizer.zero_grad()

 # Backward pass: compute gradients

 loss.backward()

 # Update parameters

 optimizer.step()

mini-Batch GD

for epoch in range(num_epochs): # Iterate over batches of X_tr, y_tr

 for idx in range(0, len(X_tr), batch_size):

 # Forward pass: pass the input through the model

 X_batch, y_batch = X_tr[i:i+batch_size], y_tr[i:i+batch_size]

 output = model(X_tr)

 # Compute the loss

 loss = criterion(output, y_tr)

 # Zero out gradients

 optimizer.zero_grad()

 # Backward pass: compute gradients

 loss.backward()

 # Update parameters

 optimizer.step()

mini-Batch GD

Effective use of hardware,
while minimizing the
variance of gradient
updates.
Offers faster optimization
while ensuring optimal
solution

The horse which was raced past the barn tripped .

RNN Limitation:
Losing Track of Long Distance Dependencies

Language modeling
with an RNN

RNN

step 1 step 2 …

RNN-Based Language Models
Take-Aways

● Simple RNNs are powerful models but they are difficult to train:

○ Just two functions h
(t)

 and y
(t)

 where h
(t)

is a combination of h
(t-1)

 and x
(t)

.

○ Exploding and vanishing gradients make training difficult to converge.

● LSTM and GRU cells solve

○ Hidden states pass from one time-step to the next, allow for

long-distance dependencies.

○ Gates are used to keep hidden states from changing rapidly (and thus

keeps gradients under control).

○ To train: mini-batch stochastic gradient descent over cross-entropy cost

● Difficult to capture long-distance dependencies

● Not parallelizable -- need sequential processing.

○ Slow computation for long sequences

● Vanishing or exploding gradients

Recap: RNN Limitations

How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

Always take the most probable next word:

def generateGreedy(model, history=['<s>']):
vocabProbs = model.getNextProbs(history)
history += argmax(vocabProbs)

 #word with maximum prob
if history[-1] == '</s>': return history
else: return generateGreedy(model, history)

How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

Always take the most probable next word:

Problem:

p('<s> ok ok </s>')
=.28

p('<s> yes yes </s>')
=.20

def generateGreedy(model, history='<s>'):
vocabProbs = model.getNextProbs(history)
history += argmax(vocabProbs)

 #word with maximum prob
if history[-1] == '</s>': return history
else: return generateGreedy(model, history)

<s>

</s>
</s>

</s>
</s>

</s>
</s>

How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

Always take the most probable next word:

def generateGreedy(model, history=['<s>']):
vocabProbs = model.getNextProbs(history)
history += argmax(vocabProbs)

 #word with maximum prob
if history[-1] == '</s>': return history
else: return generateGreedy(model, history)

Disadvantage: Focuses on the
most probable, which is the
most typical. Results in very

"average sounding" utterances.

How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

Evaluate among
multiple sequences.

Restrict to consider
the top k (beam
width) most probable
per step.

def generateBeam(model, history=['<s>'], init_prob=1, k=4):
 frontier = [(history, init_prob)]
 max_path = []
 max_path_p = -1.0
 while path, path_p in frontier:
 if path[-1] == "</s>": #current max
 if path_p > max_path_p:

 max_path = path
 map_path_p = path_p
else:

 vocabProbs = model.getNextProbs(path)
 nextWPs = topK(vocabProbs, k)
 for w, p in nextWPs.items():

frontier.append((path+w, path_p*p))
 return max_path, max_path_p

How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

Evaluate among
multiple sequences.

Restrict to consider
the top k (beam
width) most probable
per step.

def generateBeam(model, history='<s>', init_prob=1, k=4):
 frontier = [(history, init_prob)]
 max_path = []
 max_path_p = -1.0
 while path, path_p in frontier:
 if path[-1] == "</s>": #current max

if path_p > max_path_p:
max_path = path
map_path_p = path_p

 else:
vocabProbs = model.getNextProbs(path)
nextWPs = topK(vocabProbs, k)
for w, p in nextWPs.items():

frontier.append((s+w, path_p*p))
 return max_path, max_path_p

How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

Evaluate among
multiple sequences.

Restrict to consider
the top k (beam
width) most probable
per step.

How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

Evaluate among
multiple sequences.

Restrict to consider
the top k (beam
width) most probable
per step.

How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

Evaluate among
multiple sequences.

Restrict to consider
the top k (beam
width) most probable
per step.

def generateBeam(model, history='<s>', init_prob=1, k=4):
 frontier = [(history, init_prob)]
 max_path = []
 max_path_p = -1.0
 while path, path_p in frontier:
 if path[-1] == "</s>": #current max

if path_p > max_path_p:
max_path = path
map_path_p = path_p

 else:
vocabProbs = model.getNextProbs(path)
nextWPs = topK(vocabProbs, k)
for w, p in nextWPs.items():

frontier.append((s+w, path_p*p))
 return max_path, max_path_p

How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

Evaluate among
multiple sequences.

Restrict to consider
the top k (beam
width) most probable
per step.

def generateBeam(model, history='<s>', init_prob=1, k=4):
 frontier = [(history, init_prob)]
 max_path = []
 max_path_p = -1.0
 while path, path_p in frontier:
 if path[-1] == "</s>": #current potential end

if path_p > max_path_p:
max_path = path
map_path_p = path_p

 else:
vocabProbs = model.getNextProbs(path)
nextWPs = topK(vocabProbs, k)
for w, p in nextWPs.items():

frontier.append((s+w, path_p*p))
 return max_path, max_path_p

How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

Evaluate among
multiple sequences.

Restrict to consider
the top k (beam
width) most probable
per step.

def generateBeam(model, history='<s>', init_prob=1, k=4):
 frontier = [(history, init_prob)]
 max_path = []
 max_path_p = -1.0
 while path, path_p in frontier:
 if path[-1] == "</s>": #current potential end

if path_p > max_path_p:
max_path = path
map_path_p = path_p

 else:
vocabProbs = model.getNextProbs(path)
nextWPs = topK(vocabProbs, k)
for w, p in nextWPs.items():

frontier.append((s+w, path_p*p))
 return max_path, max_path_p

How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

def generateRandWalk(model, history=['<s>']):
vocabProbs = model.getNextProbs(history)
history += multinomial.draw(vocabProbs)
 #random multinomial draw by probs
if history[-1] == '</s>': return history
else: return generateRandWalk(model, history)

Task: Estimate P(wi| w1,…wi-1)
:P(masked word given history)

P(with | He ate the cake <M>) = ?

 with yummy using and by without

How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

Easiest for somewhat realistic generation;
most true (occasionally picks low prob)

def generateRandWalk(model, history=['<s>']):
vocabProbs = model.getNextProbs(history)
history += multinomial.draw(vocabProbs)
 #random multinomial draw by probs
if history[-1] == '</s>': return history
else: return generateRandWalk(model, history)

Task: Estimate P(wi| w1,…wi-1)
:P(masked word given history)

P(with | He ate the cake <M>) = ?

 with yummy using and by without

How to use an LM for Generation

Practical Points

● Use log probs for faster computation tracking maximums.

● Can normalize by length to not favor shorter sequences:

● Combine beam and random walk for more novelty.

How do we Optimize Neural Networks?

How do we Optimize Neural Networks?

How do we Optimize Neural Networks?

Sigmoid

 "log loss" or "normalized log loss":

Simple update step

Update Step:
βnew = βold - 𝞪 * grad

How do we Optimize Neural Networks?

How do we Optimize Complex Neural Networks?

Function

How do we Optimize Complex Neural Networks?

How do we Optimize Complex Neural Networks?

@ e-z +1 1/h

x

W

f

Back Propagation

@ e-z +1 1/h

x

W

f

Think of Networks as a connected
Graph

Back Propagation

e-z +1 1/h

Think of Networks as a connected
Graph

x0

w0

x1

w1

w2

*

* + f

Back Propagation

e-z +1

x0

w0

x1

w1

w2

*

* + 1/h f

Forward Pass: Compute the
intermediate values and network
output

1

.5

-.3

.1

2

Back Propagation

e-z +1

x0

w0

x1

w1

w2

*

* + 1/h f

Forward Pass: Compute the
intermediate values and network
output

1

.5

-.3

.1

2

.5

-.6

Back Propagation

e-z +1

x0

w0

x1

w1

w2

*

* + 1/h f

Forward Pass: Compute the
intermediate values and network
output

1

.5

-.3

.1

2

.5

-.6 0 1 2 .5

Back Propagation

e-z +1

x0

w0

x1

w1

w2

*

* + 1/h f

At each step we are going to
compute the local gradient and
chain it to gradient wrt f

1

.5

-.3

.1

2

.5

-.6 0 1 2 .5

Back Propagation

e-z +1

x0

w0

x1

w1

w2

*

* + 1/h f

1

.5

-.3

.1

2

.5

-.6 0 1 2 .5

??

Local Gradient: What is the differential of
the function 1/h wrt h?

Back Propagation

e-z +1

x0

w0

x1

w1

w2

*

* + 1/h f

1

.5

-.3

.1

2

.5

-.6 0 1 2 .5

??

Local Gradient: What is the differential of
the function 1/h wrt h? -1/h2

Back Propagation

e-z +1

x0

w0

x1

w1

w2

*

* + 1/h f

1

.5

-.3

.1

2

.5

-.6 0 1 2 .5

-.25

Local Gradient: What is the differential of
the function 1/h wrt h? -1/h2

Back Propagation

e-z +1

x0

w0

x1

w1

w2

*

* + 1/h f

1

.5

-.3

.1

2

.5

-.6 0 1 2 .5

-.25

Local Gradient: What is the differential of
the function 1 + p wrt p ?

??

Back Propagation

e-z +1

x0

w0

x1

w1

w2

*

* + 1/h f

1

.5

-.3

.1

2

.5

-.6 0 1 2 .5

-.25

Local Gradient: What is the differential of
the function 1 + p wrt p ? 1

??

Back Propagation

e-z +1

x0

w0

x1

w1

w2

*

* + 1/h f

1

.5

-.3

.1

2

.5

-.6 0 1 2 .5

-.25

Local Gradient: What is the differential of
the function 1 + p wrt p ? 1

-.25

Back Propagation

e-z +1

x0

w0

x1

w1

w2

*

* + 1/h f

1

.5

-.3

.1

2

.5

-.6 0 1 2 .5

-.25-.25.25

Back Propagation

e-z +1

x0

w0

x1

w1

w2

*

* + 1/h f

1

.5

-.3

.1

2

.5

-.6 0 1 2 .5

-.25-.25.25.25

.25

Back Propagation

e-z +1

x0

w0

x1

w1

w2

*

* + 1/h f

1

.5

-.3

.1

2

.5

-.6 0 1 2 .5

-.25-.25.25.25

.25

The + operator is a gradient distributor. It
distributes the gradient equally to all its connecting
nodes.

Back Propagation

e-z +1

x0

w0

x1

w1

w2

*

* + 1/h f

1

.5

-.3

.1

2

.5

-.6 0 1 2 .5

-.25-.25.25

.25

.25

.25.25

.5

.125

-.075

Back Propagation

- Gradients of parameters in a large complex networks can be computed by
piecing the local gradients together

Back Propagation

- Gradients of parameters in a large complex networks can be computed by
piecing the local gradients together

- Chain rule helps to build large networks without having to compute the gradient
rule for each parameter ahead of time

Back Propagation

- Gradients of parameters in a large complex networks can be computed by
piecing the local gradients together

- Chain rule helps to build large networks without having to compute the gradient
rule for each parameter ahead of time

- Gradient computation of f wrt to a parameter w with intermediate output z is:

∂f / ∂w = ∂f / ∂z * ∂z / ∂w

Back Propagation Demonstration

Demonstration ipython notebook:

https://bit.ly/cse538sp25-325-backprop

https://bit.ly/cse538sp25-325-backprop

How can this be done in PyTorch?

class CustomActivation(torch.autograd.Function):
 @staticmethod
 def forward(ctx, input):
 # Forward pass of the custom activation.
 # Compute the output
 # save intermediate variables required for the backward pass.

 @staticmethod
 def backward(ctx, grad_output):
 # Backward pass of the custom activation.
 # Compute the gradient of the loss with respect to the input.
 # Args: grad_output-Gradient of the loss wrt the activation op
 # Returns: Gradient of the loss with respect to the input.

 raise NotImplementedError

How can this be done in PyTorch?

class SigmoidActivation(torch.autograd.Function):
 @staticmethod
 def forward(ctx, input):
 # Compute the sigmoid function: f(x) = 1 / (1 + exp(-x))
 result = 1 / (1 + torch.exp(-input))

ctx.save_for_backward(result)
Return result

 @staticmethod
 def backward(ctx, grad_output):
 (result,) = ctx.saved_tensors

The derivative of the sigmoid is: f(x) * (1 - f(x))
 grad_input = grad_output * result * (1 - result)

Return grad_input

Supplemental Review Material

- we increase the size of hidden dimensions?

What happens to this update rule when…

Rule stays the same

- we increase the size of hidden dimensions?
- we change the activation from sigmoid?

What happens to this update rule when…

Rule stays the same
Substitute the partial
differential of sigmoid

- we increase the size of hidden dimensions?
- we change the activation from sigmoid?

- we stack more layers of RNN on top of each other?

What happens to this update rule when…
Rule stays the same
Substitute the partial differential
of sigmoid

- we increase the size of hidden dimensions?
- we change the activation from sigmoid?

- we stack more layers of RNN on top of each other?

What happens to this update rule when…
Rule stays the same
Substitute the partial differential
of sigmoid

Hot mess!

- we increase the size of hidden dimensions?
- we change the activation from sigmoid?

- we stack more layers of RNN on top of each other?

What happens to this update rule when…
Rule stays the same
Substitute the partial differential
of sigmoid

Hot mess!

But how are we performing Gradient Descent on
these Complex Models?

- we increase the size of hidden dimensions?
- we change the activation from sigmoid?

- we stack more layers of RNN on top of each other?

What happens to this update rule when…
Rule stays the same
Substitute the partial differential
of sigmoid

Hot mess!

But how are we performing Gradient Descent on
these Complex Models? Back Propagation

(More on the lecture after spring break!!!)

