Deep Learning &
Recurrent Neural Networks

CSES538 - Spring 2025

Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.
. 1948

RoBERTA

_

Language Models
Vector Semantics
m LMs + Vectors

~logarithmic scale
GPT4

Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.
. 1948

These (or similar) are
behind almost all
state-of-the-art

modern NLP systems

Language Models RoBERTA

Vector Semantics
m LMs + Vectors

_

~logarithmic scale

GPT4

Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.
1948

el Shannon: A Mathematical Theory of Communication (first digital language model)
K Jelinek et al. (IBM): Language Models for Sneech Recognition

19

Osgood: The Brown et al.: Class-based ngrai The§e (or similar) are
Measurement 2003 natural language behind almost all
) state-of-the-art
of Meaning ’
ISRV WG]e modern NLP systems

. Deerwaterj | 2010
Switzer: Vector Indexing by An RNN based / Mikolov: word2vec
Space Models 3 language model _~
Semantic AN . ELMO 7018
/

) |
(LSA) Collobert and

Bengio: W _ i PT
B Language Models Neural-net es.ton. A unified ’ __ ROBERTA
B Vector Semantics based architecture for

. natural language BERT
embeddings , ocessing: Deep
~logarithmic scale

neural networks... GPT4

m LMs + Vectors

Attention
B

RNNs
B
Neural Networks

Artificial Neural Networks

What is it?

Artificial Neural Networks

What is it?

- Biologically inspired computing model
- Learn patterns from the data
- Can even approximate nonlinear functions in the nature!

Artificial Neural Networks

What is it?

- Biologically inspired computing model
- Learn patterns from the data
- Can even approximate nonlinear functions in the nature!

Artificial Neural Networks

> : 4
What is it? r How did we do this:
- Biologically inspired computing model
- Learn patterns from the data
- Can even approximate nonlinear functions in the nature!

Artificial Neural Networks

ol

Artificial Neural Networks

! ol

Artificial Neural Networks

! oioi®

import torch

Artificial Neural Networks from torch import nn

o9

import torch

Artificial Neural Networks from torch import nn

I o¢

import torch

Artificial Neural Networks from torch import nn

oo~

But, how do we model complex systems using these linear systems?

Deep Learning

But, how do we model complex systems using these linear systems?

Deep Learning

T~

linear regressions + non-linear activations

Deep Learning

T~

Inputs Weights Net input Activation
function function

linear regressions + non-linear activations

(matmul)

(weighted sum)

Activation Functions
Z = h(t)W

Common Activation Functions
z=h W
(t)

Logistic: o(z)=1/(1+€%)

Hyperbolic tangent: tanh(z) = 20(2z) - 1 = (**- 1)/ (e** + 1)

Rectified linear unit (ReLU): ReLU(z) = max(0, z)

Common Activation Functions
z=lo(t)W T 1

Logistic: o(z)=1/(1+€%)

_/ Fal

-6 —4 -2 0 2 4 6

Hyperbolic tangent: tanh(z) = 20(2z) - 1 = (**- 1)/ (e** + 1)

Rectified linear unit (ReLU): ReLU(z) = max(0, z)

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

Inputs Weights Net input Activation
function function

Activation Function

output hz =g|(xVV)

(weighted sum)

Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden
layer depends on the current input as well as the activation value of the hidden layer from the

previous timestep. (Jurafsky, 2019)

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

Activation Function

h,=g,(xW)
output layer WIS SURZ4Y

input layer ypred :gﬁ’(hZVVﬁml)
hidden layer 1 hidden layer 2

Simple recurrent neural network after ElIman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden

layer depends on the current input as well as the activation value of the hidden layer from the
previous timestep. (Jurafsky, 2019)

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

Activation Function

h,=g,(xW)#[nx3]->[nx4]
SUGVQARYEY /) = ¢ (b W) #[n x 4] -> [n x 4]
input layer ypredzgg(hz%wl)#[nxlt] > [nx1]
hidden layer 1 hidden layer 2

Simple recurrent neural network after ElIman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden

layer depends on the current input as well as the activation value of the hidden layer from the
previous timestep. (Jurafsky, 2019)

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

Activation Function

by =&, W)

“hidden layer” —=

Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden

layer depends on the current input as well as the activation value of the hidden layer from the
previous timestep. (Jurafsky, 2019)

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

C)

)< 0 =8%,V)

“hidden layer” — n

X '

Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden
layer depends on the current input as well as the activation value of the hidden layer from the
previous timestep. (Jurafsky, 2019)

Language Modeling

Building a model (or system / API) that can answer the following:

a sequence of
natural language

-

_

~

Trained

Language

Model

J

|

Training Corpus

training
(fit, learn)

What is the next word
>N
in the sequence?

The horse which was raced

past the barn [tripped] .

Language Maogdel

Building a model (ors

a sequence of

natural language

Training Corpus

To fully capture natural
language, models get

very complex!

Trained

Language
Model

g J

|

training
(fit, learn)

What is the next word
>N
in the sequence?

The horse which was raced

past the barn [tripped] .

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

C)

)< 0 =8%,V)

“hidden layer” — n

X '

Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden
layer depends on the current input as well as the activation value of the hidden layer from the
previous timestep. (Jurafsky, 2019)

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

Yt
L T
_ I
hidden layer’ — : C by=gh, , Utx,V)
I T
xt shorthand for vector/ matrix multiply

Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden
layer depends on the current input as well as the activation value of the hidden layer from the

previous timestep. (Jurafsky, 2019)

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

Yi

F T Activation Function

I
I |

“hidden layer” — :(h){ " g(h(”)U+ V)
I

S

Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden
layer depends on the current input as well as the activation value of the hidden layer from the

previous timestep. (Jurafsky, 2019)

The Standard Recurrent Neural Network

(yt){ .y (t) :f (b(t) VV)
|
[2= =A T Actlvatlon Function

|
|
1] g A h
hidden layer” — : C t){ o g(h(”)U+x(t)V)
|

Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden
layer depends on the current input as well as the activation value of the hidden layer from the

previous timestep. (Jurafsky, 2019)

— =107

The Standard RNN

i#fbrward pass graph:

Ny = @
for i in range(1l, len(x)):

h(n = g(U hﬁ=D + W xﬁj) #update hidden state

Yy = (Vv hﬁ)) #update output

— =107

The Standard RNN ===~

|

|

! ‘<:hv=gM&UU+wa)
'¢+

|

C X)
i#fbrward pass:
Ny = @
for i in range(1l, len(x)):
h(n = tanh(matmul(U,hU:D)+ matmul(w,xﬁ))) #update hidden state

Yy = softmax(matmul(V, h“))) #update output (for classification)

— =107

The Standard RNN

C X)
def forward(self, X):
#Basic RNN Forward Pass:
h(m =0
for i in range(1, len(x)):
h(n = torch.tanh(torch.matmul(U,hufn)+ torch.matmul(w,x(n)) #update

|
|
|
|
|
|
|
|
|
I .
| hidden state

: Yy = nn.log softmax(torch.matmul(V, h(n)) #update output
|

|

|

|

|

|

|

|

|

|

|

loss _func = nn.NLLLoss() #negative log likelihood loss
#torch.mean(-torch.sum(y*y pred))

y Yoo Y o Yo
Visualizing Sequences: T f i T ™ T »
Unrolling ; ; : h(O)T hmT

x o X1 %o

$ Time

&mJ[i&mJ[LJ[JM[JLM

|
lﬂlﬁlﬂlﬂl

(C Janet) (will) _back) C(the i bill)

Uy R] Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.

y Yoo Yo Yo
Visualizing Sequences: T T i t i
Unrolling ; ; T g :) : r
X o X X2
$ Time

Hju][iﬂ,mm][&ﬂm][&J}ﬂ,ﬂ dﬂ,um

e
Yy =Sl W)

._,._,._,. : { Activation Function

h(t) =8 Ut %yV)

(. Janet) (will) _back) C(the i bill)

QTR Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.

¥ Yo Yo Yo
Visualizing Sequences: T i N t "
Unrolling : ; T h(O)T hmT
X o *n %o
P Time
[Lu][mﬂm][&ﬂm][mﬂuﬂ dﬂ,u,m J
Y ewiry =SB iy W)
. . . . Activation Function
\h (bill") — & (b ("the”) U+ X bitl”) V)
(__Janet) (C__ wil) back) (C the Wk bill)

QTR Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.

Yoo Yo Yo
I
h s 1 h(,) T
X X

P Time

T 0
&&ﬂ}[iﬂhj[&ﬂm J[&Jlu,u dﬂ,um "

*(0)

(—Jdanet) wil_) back) _the HC_ bl ®
The GRU!

Visualizing Sequences:
Unrolling

xX —p b <

(t-1) >

2

> hy,

:

GRU cell

A

¥

" e
?
P\
<4 AW s
' | BOR

QTR Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.

'y
BENE

llI‘IlllIi‘"y;

The GRU

Gated Recurrent Unit

Yoy
h 4)
(t'1)_t ® @ B> h(t)
i — Element-wise !
i~ multiplication !
| ® Addition |
i_ logistic !
| I tanh |

GRU cell J

(Geron, 2017)

The GRU

Standard RNN:

Yo
. s ~
(t-1) —
)
_ _J
|
X

®

Element-wise
multiplication

@ Addion |

(Geron, 2017)

The GRU

Standard RNN:

Outputs

Output
\
LTU ! |ayer‘
. N, Input
Bias Neuron v P
(always outputs 1) ! layer

Input Neuron

yf) (passthrough) %1 %
Inputs
i s N
1) —p hg,
: Element-wise :
E® multipli i
“® Addion |
z ;]
A / | mmm logistic |
| m— o |
_ _J

®

(Geron, 2017)

The GRU

Standard RNN:

r T
Zoy =0(Wee Xy + W' -he_py+b)

XZ

Yo
A
h 8 ~
= = hi
: Element-wise
i~ multiplication |
| @ Addition
B0 : D
I logistic |
J | m—tnh |
~),
|
Xt)

(Geron, 2017)

L1

IEENEREOW »-

W\

G 1

)
‘ Y
- AW s
LR
| BN

T T
The GRU oy = G(WXZ RGO th 'h(t—l) + bz)

Gated Recurrent Unit

Yo
A
h 8 ~
(t-1) —p ® @ . h(t)

: Element-wise
i~ multiplication |
| @ Addition
i_ logistic !
 W— tanh |

GRU cell J

© (Geron, 2017)

T T
The GRU 2y =0(Wy X+ W, -h,_+b)

Gated Recurrent Unit

h, =2,®h,_)+ -1z, ®8g,
update gate

relevance gate Yo
A

~

Nit) g [\

! ® Element-wise
{ ~ multiplication !

i @ Addition
i mEm logistic !

>
I'-'\p, /

GRU cell J

?'!

—— RN
JITE

-
lll,llurr‘;:.‘".

T T
The GRU 2y =0(Wy X+ W, -h,_+b)

Gated Recurrent Unit
h, =2,®h,_)+ -1z, ®g,

update gate " A candidate for updating h, h~
A /

! ® Element-wise
{ ~ multiplication !

relevance gate

Nit) g [\

i @ Addition

i_ logistic !

GRU cell J

JITEE TR

lu,uurr"g:.".\
(!
\.

T T
The GRU 2y =0(Wy X+ W, -h,_)+b)

T T
Gated Recurrent Unit g, = tanh (W, -x;,+W, - (r,,®h,_ ;) +b,)
h, =2,®h,_)+ -1z, ®g,

Yy
A
h 4)
(t'1)_F ® @ B> h(t)
i — Element-wise !
multiplication
i @ Addition
i_ logistic !
| - fanh |
GRU cell /

The cake, which contained candles, was eaten.

The GRU 2, =0o(W. -x,+W, -h,_,+b)

r, =o(W, -X,+W, -h,+b)

g, = tanh (W, -x,+W, ' (r,®h,_;)+b,)
h, =z,®h,)+ -2,)®g;

Gated Recurrent Unit

Yy
A
()
h
(t'1)_t ® @ B> h(t)
i — Element-wise !
multiplication
i @ Addition
i I logistic
| - fanh |
GRU cell /

The cake, which contained candles, was eaten.

What about the gradient?

The gates (i.e. multiplications
J— T. T.
zy =0(We' X+ Wy, "h_py+b,) based on a logistic) often end up
r, =o(W, -x,+W, -h,,,+b,) keeping the hidden state exactly
_ T T (or nearly exactly) as it was. Thus,
8y = tanh (W' X+ Wy, - (ry ®hy_y) +by) for most dimensions of h,
0 =2p®he+ (1 -2y ®8,

y ~
\ Ny ™ Ny

()

X

(t-1) —p

)

XD

GRU cell /

The cake, which contained candles, was eaten.

What about the gradient?

Z)
0

8(1)

G(Wx o X(t) + WhZT * h(t—l) + bZ)

. .

T T
== G(er ° X(t) + Whr ° h(t—l) + br)

T T
= tanh (Wxg * X(t) + Whg * (l'(t) ® h(t—l)) + bg)
=2, ®h,_)+ (1 -27,)®¢g;
Yo
A
()
() —p ®

XD

GRU cell /

> h,

The gates (i.e. multiplications
based on a logistic) often end up
keeping the hidden state exactly
(or nearly exactly) as it was. Thus,
for most dimensions of h,

Ny ™ ey
This tends to keep the gradient
from vanishing since the same
values will be present through
multiple times in backpropagation
through time. (The same idea
applies to LSTMs but is easier to
see here).

The cake, which contained candles, was eaten.

How to train a GRU-style RNN

RNN_cost = torch.mean(-torch.sum(y*torch.log(y pred))

Logistic Regression Likelihood: L(Bo, 81, -.., Bl X, Y) = | [p(x:)¥(1 — p(z:))' ¥
=1

N |V
Final Cost Function: J Z Zyl]log g " - “cross entropy error”
i=1 j=1

How to train an LSTM-style RNN

RNN_cost = torch.mean(-torch.sum(y*torch.log(y pred))

To Optimize Betas (all weights within LSTM cells):

Stochastic Gradient Descent (SGD)
-- optimize over one sample each iteration

Mini-Batch SDG:
--optimize over b samples each iteration

N V|
Final Cost Function: J) Z Z Ulog g " - “cross entropy error”

1
N«

How do we optimize this network?

2y, =0(W. X, +W, -h, +b)

ro =0o(W, -X,+W, -h,_,+b,)

g, = tanh (W, -x,+W, ' (r,®h,)+b,)
h, =z,®h,+1-z2,)®g,

o [i J s J{ ol |

V|

1 N . y
8888 e
i=1 j=1
A A A A A

(. Janet) (will)(C_ _back) C(the) (bill)

How do we optimize this network?

2y, =0(W. X, +W, -h, +b)

ro =0o(W, -X,+W, -h,_,+b,)

g, = tanh (W, -x,+W, ' (r,®h,)+b,)
h, =z,®h,+1-z2,)®g,

o [i J s J{ ol |

1 N |V| ‘ 4
8888 e
i=1 j=1
A A A A A

(. Janet) (will)(C_ _back) C(the) (bill)

Remember? Gradient Descent?

Initial

/ _— Gradient

/4
4
J
7

JB)

Global cost minimum

e Jmin(w)

>

g Update Step: B =B_,-a*grad

"log loss" or "normalized log loss":

I(8) =~ 3¢ D wiloe(w) + (1 - yi)log(1 — p)

Remember? Gradient Descent?

"log loss" or "normalized log loss":

I(8) =~ D wilox(ps) + (1 - y)log(1 - p)

Remember? Gradient Descent?

"log loss" or "normalized log loss":

Remember? Gradient Descent?

"log loss" or "normalized log loss":

Remember? Gradient Descent?

"log loss" or "normalized log loss":

Update Step:
Bnew = BoId -a’ grad

How do we do Gradient Descent for this
Problem?

- N Zzywlog yz]

i=1 j=1

2y, =0(W.' -x,+W, ' -h, +b)

ro, =oW, x,+W, -h,_+b,)

tanh (W, X+ W, - (r, ®h,_)) +b,)
h, =z,®h,)+ -z, ®8,

Bie
I

How do we optimize this network?

zt = o(W,zy + U;hy—1 + b,)

ry = o(Wyzy + Uphy—1 + b;)

l.z,, = tanh(Wphz; + Up(r, ® hy—1) + bp)

h; = (1 — Z/) Qhi1+20 }.l/

How do we optimize this network?

Compute Gradients:
¢ Hidden state gradient:
OL OL Ohiyy
=o(W,z; + U,hy_1 + b,) Oh, Ohi, Ohy

p— where g is the predicted output.
= 0’(_ H“",.;I‘[5 i L/T,‘h»[,l + b;) [

Gradients for the update gate:

]-1, = tanh(Whz; + Up(ry © hy—1) + bp)

h‘/:(l*;"

Gradients for the reset gate:

aL (
ory oh,

Gradients for the candidate hidden state:

OL 0L
Ak, Ohy ~

Gradient updates for weights and biases:

How do we optimize this network?

Compute Gradients:
¢ Hidden state gradient:

OL OL Ohiyy oL 0y,
=o(W,z; + U,hy_1 + b.) dh, Ohii Oh | 99 0k
% z where g is the predicted output.
ry = o(Wyzy + Uphy—1 + b,)

* Gradients for the update gate:

h, = tanh(Wyz; + Un(re ® hy_1) + bp)

h, = (l 2 .'J/) OQhi_1+2z0 ’tl‘[

GRU Implementation: PyTorch

self.gru_layer
self.lin_layer

nn.GRU(input_size=input_size, hidden_size=hidden_size)
nn.Linear(hidden _size, vocab size)

output_rep, hidden_rep = self.gru_layer(input_rep)
output logits = self.lin_layer(output _rep)
return output_logits

How do we update the Network?

How do we update the Network?

- Update using the:

loss over the entire train set

(GD)

GD (aka Batch GD)

for epoch in range(num_epochs): # Pass X _tr, y_tr

Forward pass: pass the input through the model

How do we update the Network?

- Update using the:

loss over the entire train set

(GD)

Accurate gradient
estimates,

How do we update the Network?

- Update using the:

loss over the entire train set loss from each sample

(GD) (SGD)

Accurate gradient
estimates,

for epoch in range(num_epochs): # Iterate over X_tr, y tr

for x_sample, y_sample in zip(X_tr, y_tr):
Forward pass: pass the input through the model

for epoch in range(num_epochs): # Iterate over X_tr, y tr

for x_sample, y_sample in zip(X_tr, y_tr):
Forward pass: pass the input through the model

How do we update the Network?

- Update using the:

loss over the entire train set loss from each sample
(€]p)) (SGD)
Accurate gradient Easy to implement,

estimates,

mini-Batch GD

for epoch in range(num_epochs): # Iterate over batches of X _tr, y tr
for idx in range(@, len(X_tr), batch_size):
Forward pass: pass the input through the model

mini-Batch GD

for epoch in range(num_epochs): # Iterate over batches of X _tr, y tr
for idx in range(@, len(X_tr), batch_size):
Forward pass: pass the input through the model

RNN Limitation:
Losing Track of Long Distance Dependencies

RN

The horse which was raced past the barn tripped .

[ﬂm][ilm]@lm L ds][als][iﬂm]
P

RNN

&LJ[&J}M

F\1

p\z

lﬂﬂﬂﬂ

4

)

Language modeling
with an RNN

RNN-Based Language Models

Take-Aways

e Simple RNNs are powerful models but they are difficult to train:
o Just two functions h(t) and Y where h(t) is a combination of h(t-l) and Xy
o Exploding and vanishing gradients make training difficult to converge.
e LSTM and GRU cells solve
o Hidden states pass from one time-step to the next, allow for
long-distance dependencies.
o Gates are used to keep hidden states from changing rapidly (and thus

keeps gradients under control).
o To train: mini-batch stochastic gradient descent over cross-entropy cost

Recap: RNN Limitations

e Difficult to capture long-distance dependencies
e Not parallelizable -- need sequential processing.
o Slow computation for long sequences

e \Vanishing or exploding gradients

How to use an LM for Generation

e Greedy Search
e Beam Search
e Random Walk

How to use an LM for Generation

e Greedy Search Always take the most probable next word:
e Beam Search

e Random Walk Wy = argmax,, -y P(W|W<t)

How to use an LM for Generation

e Greedy Search Always take the most probable next word:
e Beam Seargh

e Random Pty t1.ty)

Problem:

p('<s> ok ok </s>')
=.28

p('<s> yes yes </s>'

=.20 IDINCERME A search tree for generating the target string T = t1,t,... from vocabulary
V = {yes,ok,<s>}, showing the probability of generating each token from that state. Greedy
search chooses yes followed by yes, instead of the globally most probable sequence ok ok.

Disadvantage: Focuses on the
How to use an LM for Gene most probable, which is the

most typical. Results in very
e Greedy Search RUEVARCLCRUl "average sounding” utterances.
e Beam Search
e Random Walk Wy =

def generateGreedy(model, history=['<s>']):
vocabProbs = model.getNextProbs(history)
history += argmax(vocabProbs)
#word with maximum prob
if history[-1] == "'</s>': return history
else: return generateGreedy(model, history)

How to use an LM for Generation

e Greedy Search
e Beam Search
e Random Walk

Evaluate among
multiple sequences.

Restrict to consider
the top k (beam
width) most probable
per step.

2 an LM for Generation

log P(arrived|x)

=16 def generateBeam(model, history='<s>', init prob=1, k=4):
ch frontier = [(history, init_prob)]
h max_path = []
K max_path_p = -1.0
while path, path_p in frontier:
if path[-1] == "</s>": #current max

if path_p > max_path p:
max_path = path

hg map_path _p = path p
else:
vocabProbs = model.getNextProbs(path)
pr nextWPs = topK(vocabProbs, k)

‘ for w, p in nextWPs.items():
Siar frontier.append((s+w, path p*p))
log P(y,x) l(_
- S return max_path, max_path_p

Yi

DTN RAY Scoring f

of each hypothesis in the
k paths are extended to t

log P (arrived the|x

o BEe .

NN Generation

log P(arrived|x) - 69

=.1.6 /

arrived—-2.3—

log P(vy,|x) log P(v,|y,.x) log P(v,
- -] -~ o L=] - < Jl

Yi Y2

IO CHRARY Scoring for beam search decoding
of each hypothesis in the beam by incrementally ¢
k paths are extended to the next step.

log P (arrived thelx)

o P(: 3 sl
log P(arrivedix) - 69 log P(arrived witch|x) -J.2

*—l,(w/ 7‘,

arrived—-2.3— © / -2.1
A

-1.6 -1.6
/ Iu_l:; P(the ‘:'uk'/
1) th = -l'(\' 1
BOS\ 102 P(the|x) -.51 _.————'W|tCh
-92 =-92 4 69"green '
P '
the— |
\ log P(the witch|x) -
—1‘.2\—.—_,1 -
witch -.11——=arlrve
2.3 4
A \ —p.
log P(y,|x) log P(y,|y;.x) log P(y3]y,.y1.X)
Yi Y2 Y3

DTN CMRAY Scoring for beam search decoding with a beam
of each hypothesis in the beam by incrementally adding the logp
k paths are extended to the next step.

log P (arrived the|x) log P (“the green witch arrived”|x)
—-77 log P (the|x) + log P(green|the x)
R + log P(witch | the, green x)
® +logP(arrived|the,green,witch,x)
/ +log P(EOS|the green,witch,arrived X)[~---. | _
log P(arrivedx) - 69 log P(arrived witch|x) -3.2 " e
=18 =-39 N\ 25 __.EOS
arrived—-2.3— O 2.1 22
P arrlved\ m
_1‘6 _1‘6 / _2-3\ s
4 log P(the gl'ccn/ -.36 39 ¢ at
=-1.6 .
BOS__ logP(thelx) _ 51—~ Witch 16— ©
=93 =99 69,,green .
.A e =% ~N -
the log P(the witcl e
\ i 2 U‘i l((lL WIICh|X) 27 51/'EOS
. — s . e 3
Y witch -.11—arrived
-1.61 3.8
-2.3
log P(y,|x) log P(y,ly;.X) log P(y3ly5,¥1.X) log P(y,|y3.¥2,¥1-X) log P(y;|y4.¥3.¥2.¥1.X)
Yi y: Ys Y4 Y5

IDTICMRRY Scoring for beam search decoding with a beam width of k = 2. We maintain the log probability
of each hypothesis in the beam by incrementally adding the logprob of generating each next token. Only the top
k paths are extended to the next step.

arrived Yo

Yo
Y1 o
— BOS ' arrived
— | aardvark
a
aardvark
BOS :
start g amveéj

aardvark

aardvark

/'—

q green

tl t2 Bés | the ‘\A’/itTCh t3

How to use an LM for Generation

e Greedy Search
e Beam Search
e Random Walk

Evaluate among
multiple sequences.

Restrict to consider
the top k (beam
width) most probable
per step.

How to use an LM for Generation

e Greedy Search
e Beam Search
e Random Walk

Evaluate among
multiple sequences.

Restrict to consider
the top k (beam
width) most probable
per step.

How to use an LM for Generation

e Greedy Search def generateRandWalk(model, history=['<s>']):

e Beam Search vocabProbs = model.getNextProbs(history)

e Random Walk history += mult1nom1al.c.jr'awgvocabPr‘obs)
#random multinomial draw by probs

if history[-1] == '</s>': return history

else: return generateRandWalk(model, history)

Task: Estimate P(w.| w ,..w,)

:P(masked word given history)
P(with | He ate the cake <M>) =? = I

with yummy using and by without

How to use an LM for Generation

e Greedy Search def generateRandWalk(model, history=['<s>']):
e Beam Search vocabProbs = model.getNextProbs(history)
e Random Walk history += mult1nom1al.c.jr'awgvocabPr‘obs)
#random multinomial draw by probs
if history[-1] == '</s>': return history
else: return generateRandWalk(model, history)

Easiest for somewhat realistic generation;

:P(masked word given history)

most true (occasionally picks low prob)
Task: Estimate P(w | w ,..w,)
P(with | He ate the cake <M>) =? = I

with yummy using and by without

How to use an LM for Generation

Practical Points

e Use log probs for faster computation tracking maximums.
e Can normalize by length to not favor shorter sequences:
score(y) =logP(y|x) = ZlogP (vily1,-- ,X) (13.16)

e Combine beam and random walk for more novelty.

How do we Optimize Neural Networks?

How do we Optimize Neural Networks?

Inputs Weights Net input Activation
function function

output

How do we Optimize Neural Networks?

Inputs Weights Net input Activation
function function

output

How do we Optimize Neural Networks?

"log loss" or "normalized log loss":

Update Step:
Bnew = BoId -a’ grad

How do we Optimize Complex Neural Networks?

. hidden layer 1 hidden layer 2 hidden layer 3
input layer
o)

output layer

How do we Optimize Complex Neural Networks?

2y, =0(W. X, +W, -h, +b)

ro =0(W, -X,+W, -h,_,+b,)

g, = tanh (W, -x,+W, (r,®h,)+b,)
h, =z,®h,+d-z2,®g,

o [i J s J{ ol |

A A J A A

(. Janet) (will)(C_ _back) C(the) (bill)

How do we Optimize Complex Neural Networks?

b@ﬁ@ﬂ@ﬂ@*ﬂ

Back Propagation

b@ﬁ@ﬂ@ﬂ@*ﬂ

Think of Networks as a connected
Graph

Back Propagation

0000

Think of Networks as a connected
Graph

Back Propagation

3

o ©

-3

- a@—»@—»@»ﬂ

Forward Pass: Compute the
Intermediate values and network
output

Back Propagation

1
5 5

-.6

o 006001

Forward Pass: Compute the
Intermediate values and network
output

Back Propagation

1
5 5

-.6

o 90-0-6-0-0f

Forward Pass: Compute the
Intermediate values and network
output

Back Propagation

1
5 5

-.6

o 90-0-6-0-0f

At each step we are going to
compute the local gradient and
chain it to gradient wrt f

Back Propagation

1
5 5

-.6

o 90-0-6-0-0f

Local Gradient: What is the differential of
the function 1/h wrt h?

Back Propagation

D

;:ng -0-0-0]

-.3

Local Gradient: What is the differential of
the function 1/h wrt h? -1/h?

Back Propagation

D

;:ng -0-0-0]

-.3

Local Gradient: What is the differential of
the function 1/h wrt h? -1/h?

Back Propagation

1
5 5

-.6

o 900600

Local Gradient: What is the differential of
the function 1 + pwrtp ?

Back Propagation

D

;:ng -0-0-0]

-.3

Local Gradient: What is the differential of
the function 1 + pwrtp ? 1

Back Propagation

D

;:ng -0-0-0]

-.3

Local Gradient: What is the differential of
the function 1 + pwrtp ? 1

Back Propagation

S e
@/

0:--60-0-04

Back Propagation

S e
@/

0:--60-0-04

Back Propagation

D

;:ng -0-0-0]

-.3

The + operator is a gradient distributor. It
distributes the gradient equally to all its connecting
nodes.

Back Propagation

S e
@/

0:--60-0-04

Back Propagation

- Gradients of parameters in a large complex networks can be computed by
piecing the local gradients together

Back Propagation

- Gradients of parameters in a large complex networks can be computed by
piecing the local gradients together

- Chain rule helps to build large networks without having to compute the gradient
rule for each parameter ahead of time

Back Propagation

- Gradients of parameters in a large complex networks can be computed by
piecing the local gradients together

- Chain rule helps to build large networks without having to compute the gradient
rule for each parameter ahead of time

- Gradient computation of f wrt to a parameter w with intermediate output z is:

of /ow =0f/0z * 0z / ow

Back Propagation Demonstration

Demonstration ipython notebook:

https://bit.ly/cse538sp25-325-backprop

https://bit.ly/cse538sp25-325-backprop

How can this be done in PyTorch?

class CustomActivation(torch.autograd.Function):
@staticmethod
def forward(ctx, input):
Forward pass of the custom activation.
Compute the output
save 1intermediate variables required for the backward pass.

@staticmethod

def backward(ctx, grad output):
Backward pass of the custom activation.
Compute the gradient of the Loss with respect to the 1input.
Args: grad_output-Gradient of the loss wrt the activation op
Returns: Gradient of the loss with respect to the input.

raise NotImplementedError

How can this be done in PyTorch?

class SigmoidActivation(torch.autograd.Function):
@staticmethod
def forward(ctx, input):
Compute the sigmoid function: f(x) =1 / (1 + exp(-x))
result =1 / (1 + torch.exp(-input))
ctx.save_ for backward(result)
Return result

@staticmethod

def backward(ctx, grad output):
(result,) = ctx.saved tensors
The derivative of the sigmoid is: f(x) * (1 - f(x))
grad_input = grad output * result * (1 - result)
Return grad input

Supplemental Review Material

What happens to this update rule when...

- we increase the size of hidden dimensions? Rule stays the same

What happens to this update rule when...

- we increase the size of hidden dimensions? Rule stays the same
- we change the activation from sigmoid?

What happens to this upgs

Compute Gradients:
« Compute Gradients:
« Compute Gradients:
« Compute Gradients:

« Compute Gradients:

we increase the size of hidden dimensions? At
f’_: f((.7“'1 7(7_A(7l
- we change the activation from sigmoid? Ve S

where 7, is the predicted output.

¢ Gradients for the update gate:
oL_or
8z,
oL oL
w. 4

- we stack more layers of RNN on top of eac

¢ Gradients for the reset gate:

oL ((‘?L
Ohy
¢ Gradients for the candidate hidden state:

ory

oL 9L _ aak? ()
k- O, — tanh
oh, Ol :

¢ Gradient updates for weights and biases:

0L 0L
oL _ oL o8

oW, . Oh,
oL oL
- = — - (re ® hy1)T
U, 2 g, Mt e

OL ~— OL
oby, > Ohy

What happens to this update rule when...

Rule stays the same
- we increase the size of hidden dimensions?
- we change the activation from sigmoid?

- we stack more layers of RNN on top of each other?

What happens to this update rule when...

Rule stays the same

- we increase the size of hidden dimensions?
- we change the activation from sigmoid?

- we stack more layers of RNN on top of each other?

But how are we performing Gradient Descent on
these Complex Models?

What happens to this update rule when...

Rule stays the same

- we increase the size of hidden dimensions?
- we change the activation from sigmoid?

- we stack more layers of RNN on top of each other?

But how are we performing Gradient Descent on
these Complex Models? Back Propagation

(More on the lecture after spring break!!!)

